Graph Theory Applications in Video Games

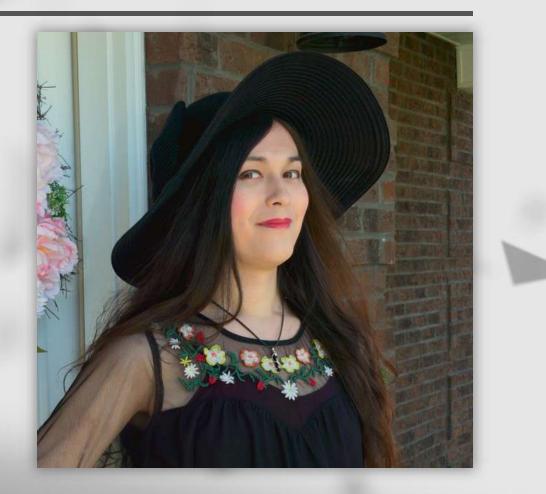
Clara Nguyễn COSC 594 – 2020/03/11

Questions

- Given a 3D model *M* of *n* vertices, how many triangles are drawn if done via Triangle List?
- What is the $lg^*(2^{2^{65536}})$? Alternatively, what is the $lg^*(^62)$?
- What does bitDP stand for?

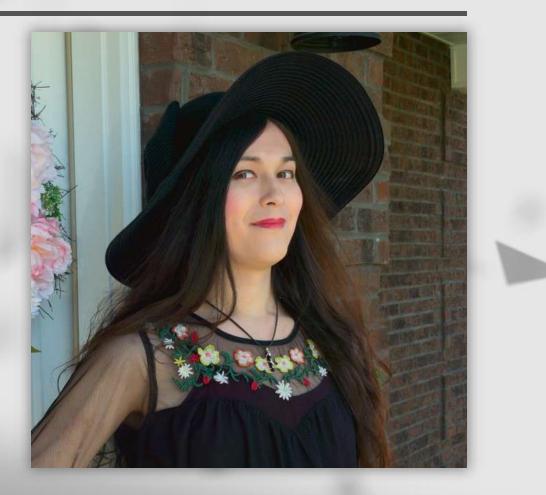
About me

- Master's Student on Course-Only track.
- Did undergrad at UTK. Graduated in Spring 2018.
- Hobbies
 - Game/Web Development
 - Content Creation (Music & Video)
- Born in Knoxville, TN! Look outside a window for a picture if you want.



More on me!

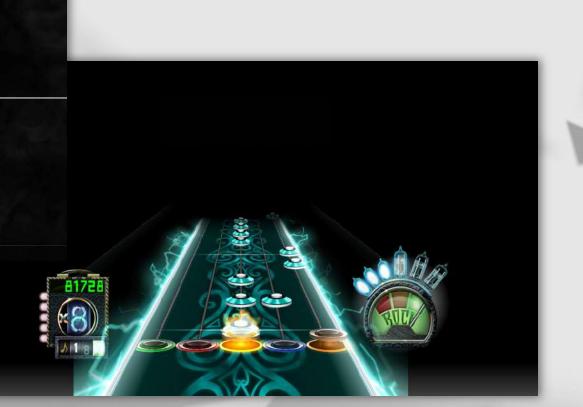
- Been Programming since I was 6. I like to do side projects on the side.
- Not actually a gamer.
- Been a TA here for around 4 years.
- Outside of Computer Science, my goal is to become a polyglot of Asian Languages.
- Not a pet person... (But I prefer cats btw)



Showcase - Game Development History

- Involved since mid-2008
- Worked with other Indie teams
- In-house Engine Development.
- 2014 Solo Project: "Keyboard Hero"
 - Rhythm Game like Guitar Hero
 - Released on Gamejolt
 - Coded in GML, Delphi, and C++
 - Over 63,000 views and 16,000 plays

Showcase - Keyboard Hero V7.5



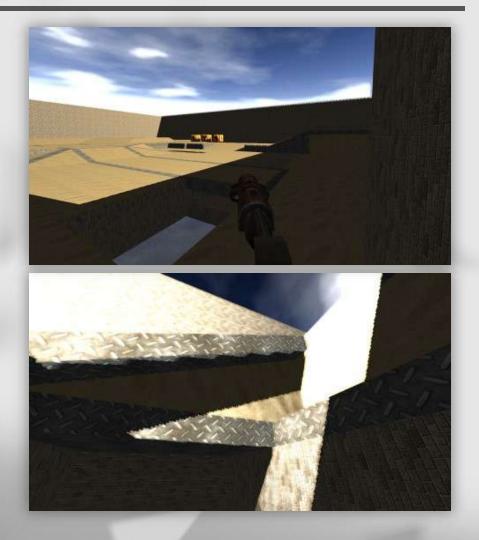
Showcase - Game Development History

- 2017 Solo Project: "Project RX"
 - Successor to previous game.
 - Had composers create music specifically for the game.
 - Over 20 songs charted.
 - Engine written in C++ entirely from scratch.
 - Unreleased as of 2020.

Showcase - Game Development History

- 2017 CN_GL (Clara Nguyễn's WebGL Wrapper)
 - Concept 3D engine written entirely from scratch to be playable in your web browser.
 - Written entirely from scratch in 52 hours.
 - This is playable!

http://web.eecs.utk.edu/~ssmit285/vORIcEmA/finalp/



Why game dev experience matters

- It's one thing to play games. It's another to develop them.
- Code can't be written sloppily. Usually has to generate and draw 30 -60 frames onto your monitor on modern hardware.
 - It's *extremely* obvious when a game is poorly optimised.
- There's lots of unique problem solving in Game Dev. You often build a "toolbox" of ways to approach a problem over time.
- Relevance-wise, Graph Theory plays a huge role in game development.

Disclaimers

- This is not your average talk.
- This is a Graph "Theory" talk... I only give a handful of game mentions and stick to concepts.
- Algorithm discussion is minimal. If I mention an algorithm, then I'll tell you what it should do, not go over the procedure (except for DFS).
- Topics are laid out intentionally to where they all may not be discussed.
 - All topics and details are here: https://tiny.utk.edu/talk5

Outline

- *The Warmup* "Rules" of Graphics
- Racing Games Lap Counting
- Maze Generation Disjoint Sets & Union-Find
- Hamiltonian Path Detection bitDP
- Honourable Mentions
- Discussion

"Rules" of Graphics

The "rules" of graphs of computer graphics

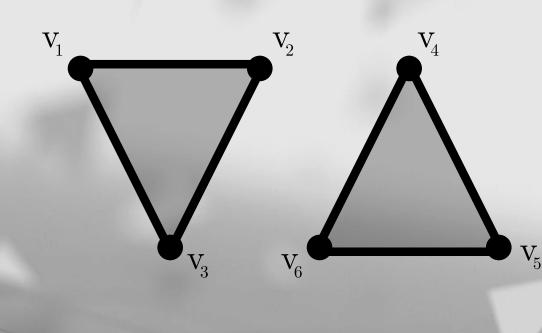
- Unlike most graphs we dealt with in class, the rules change here:
 - Vertices have **positional** coordinates (x, y, z) to define position in space.
 - There is only **one** way to represent graphs in space.
 - Edges (connections between vertices) are **implied**.
 - Everything is oriented around **triangles**.

The "rules": Edge Implication

- Edge Implying depends on how we tell the computer to draw.
- Several modes. Here are the common ones:
 - **Triangle List:** Every 3 vertices form a triangle.
 - **Triangle Strip:** First 3 vertices form a triangle. Every new vertex after will form a triangle with the previous 2 vertices.
 - **Triangle Fan:** First vertex is in every triangle. Each set of 2 vertices after the first form a triangle with the first vertex.

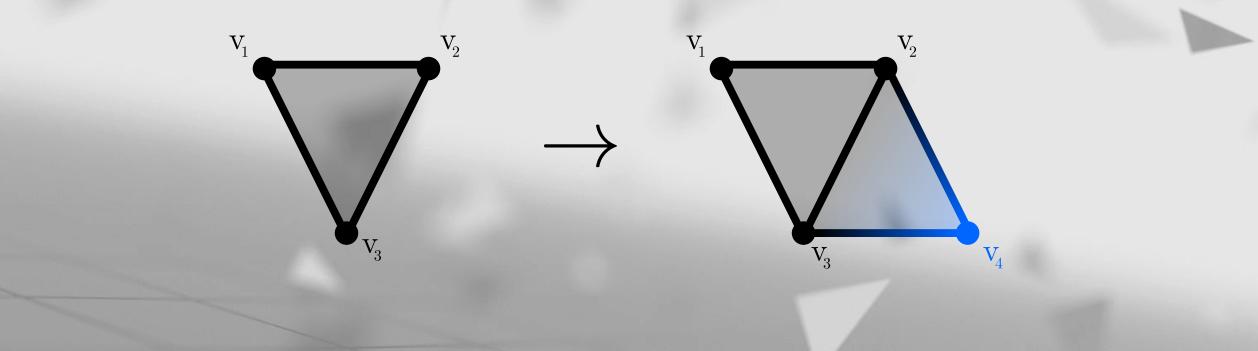
The "rules": Triangle List

- Naïve triangle drawing in multiples of 3.
- n/3 triangles drawn.
- Assume we are given a model *m* where $V(m) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$



The "rules": Triangle Strip

- Uses previous 2 vertices & new one to form triangles.
- $n \ge 3$. n 2 triangles drawn.
- Assume we are given a model m where $V(m) = \{v_1, v_2, v_3, v_4\}$



The "rules": Triangle Fan

 V_3

- Uses first vertex and latest 2 vertices to form triangles.
- $n \ge 3$. n 2 triangles drawn.
- Assume we are given a model m where $V(m) = \{v_1, v_2, v_3, v_4, v_5\}$

 V_3

 V_{4}

 \mathbf{V}

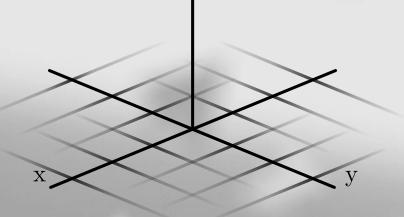
 V_3

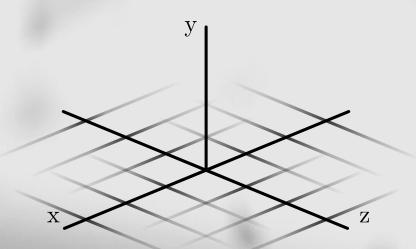
 V_{A}

The "rules": Coordinate System

- Two of the most popular cartesian coordinate systems for 3D space:
 - (x, y, z) where \boldsymbol{z} is the height axis
 - (x, y, z) where \boldsymbol{y} is the height axis

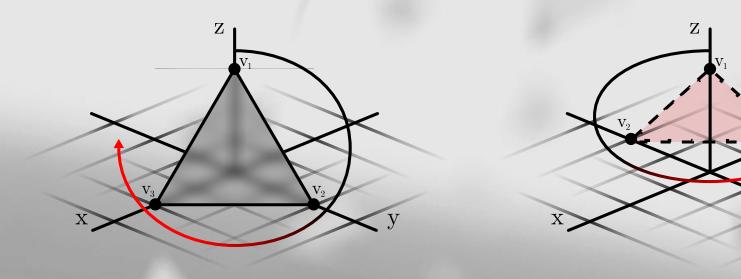
 \mathbf{Z}





The "rules": Back-Face Culling

- Front side has a triangle. Back side is invisible due to **back-face culling**.
- Relies on the order we draw the vertices. Vertices with order being
 - clockwise is front-facing. Counter-clockwise is the back.

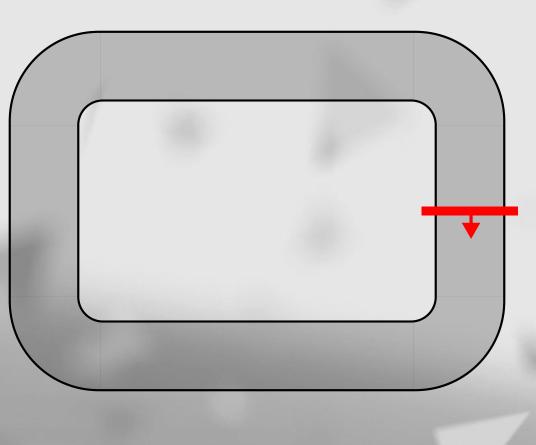


Lap Counting

Racing Games

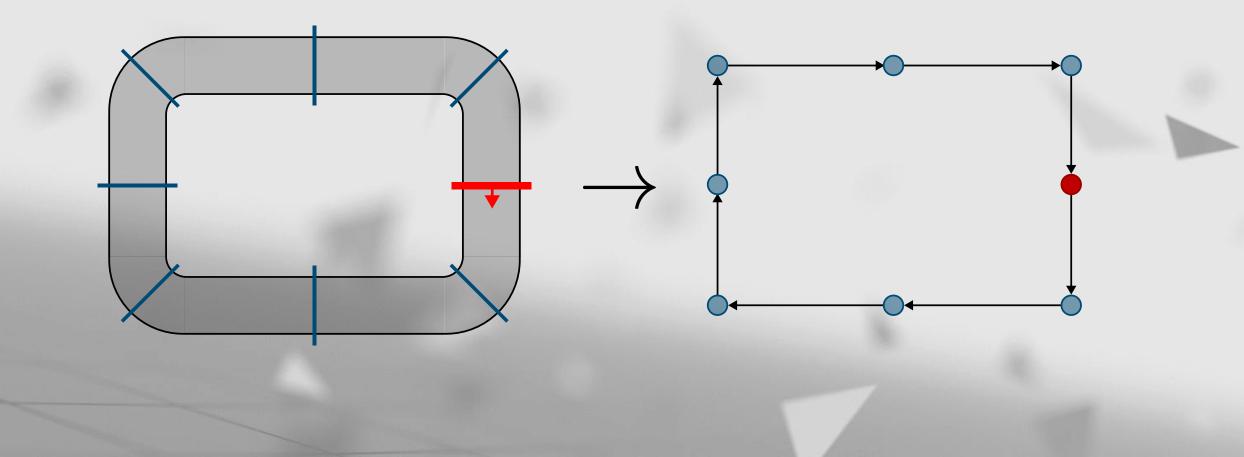
- A racing game must keep track of a few things...
 - Player Lap
 - Player Position
 - Distance between players
- How do games know when a player has completed a lap?

• Assume the following (extremely simple) racetrack:



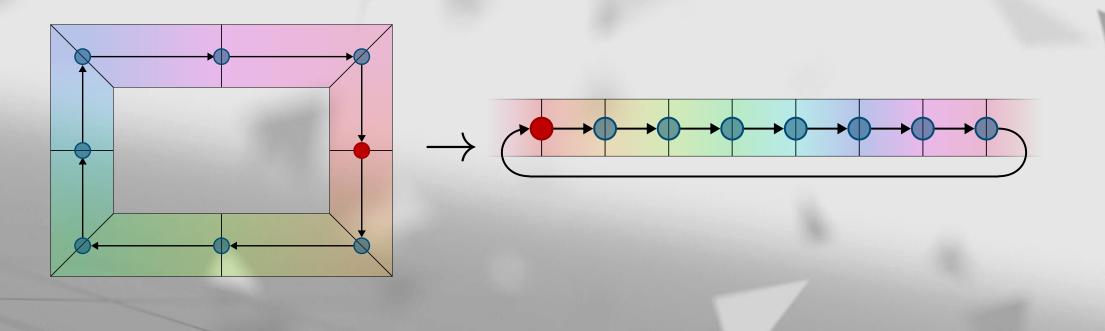
- Divide the track into "checkpoints".
- Players will have to hit all "checkpoints" and the finish line for a lap to count.
- This can be implemented as a directed graph where all checkpoints are vertices and a complete lap is a **Hamiltonian Circuit**.

• Simple racetrack broken up into checkpoints, and as a directed graph:



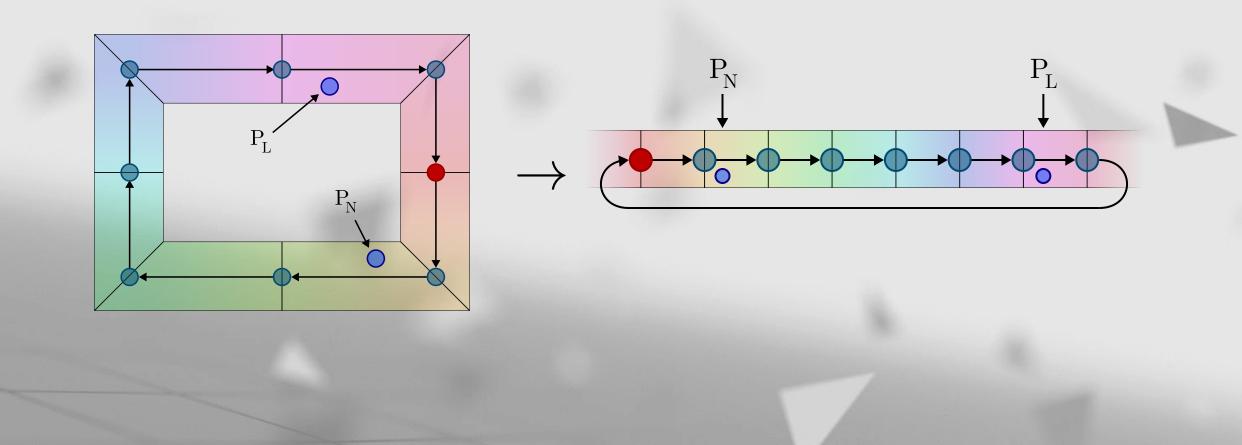
Distance between players

- How will we know how far someone is from first place?
- Graph is broken segments by-vertex, rearranged into a straight line with circular ending node, making distance computation extremely trivial.



Distance between players

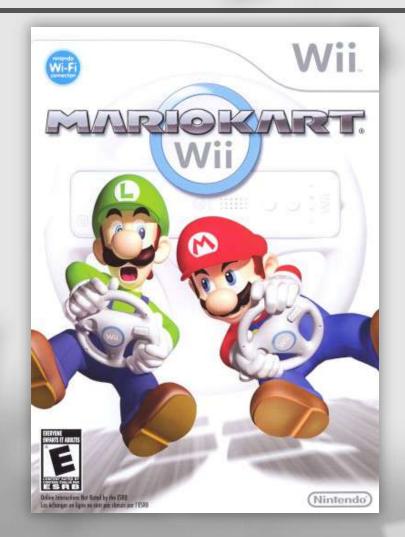
• So let's say Dr. Langston (P_L) having a really good race... unlike me (P_N)...



Lap Counting – Breaking the Rules

- In practice, there are other ways to do lap counting... besides Hamiltonian circuit detection.
- They flopped. Let's look at an extreme example.

Mario Kart Wii for Nintendo Wii (2008)



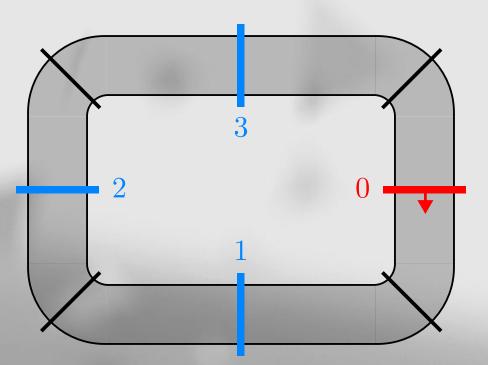
Mario Kart Wii – Breaking it down

- Breaks track into **spawn checkpoints**.
 - If you fall out of the track, you spawn at these.
- Breaks track into key checkpoints.
 - Finish line also counts as a key checkpoint.
 - Tells where you are and if you completed the lap... or do they?

Mario Kart Wii – Breaking it down

Assume the following (extremely simple) racetrack with key checkpoints,

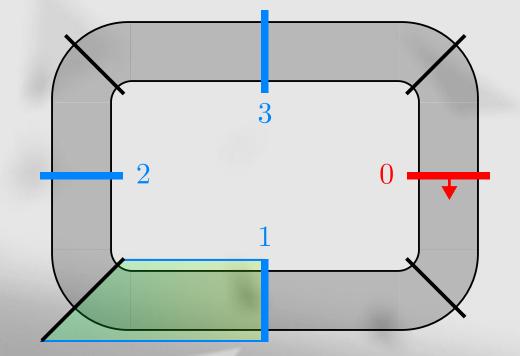
spawn checkpoints, and a finish line:



Mario Kart Wii – Breaking it down

 Going between a key checkpoint and a next checkpoint (spawn, key, finish) updates where you are in the track.

 Example: Hitting between 1 and the spawn checkpoint right after will register as you passing through checkpoint 1.

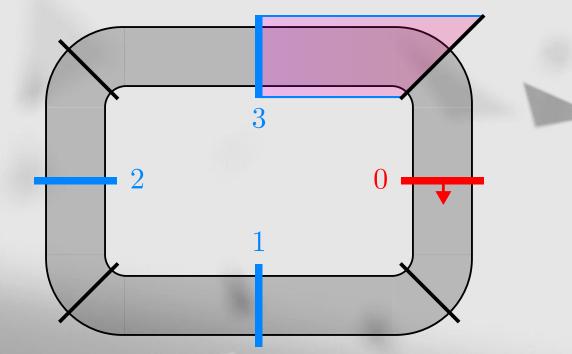


Mario Kart Wii – Ultra-Shortcuts

 Critical Flaw: Game allows you to hit the next, current, and previous key checkpoints. Completing a lap requires hitting only the last one.

 From the start of the race, we can avoid going through 1 and 2. Just jump to 3 and drive up to 0. The lap will count.

• This is known as an Ultra-Shortcut.

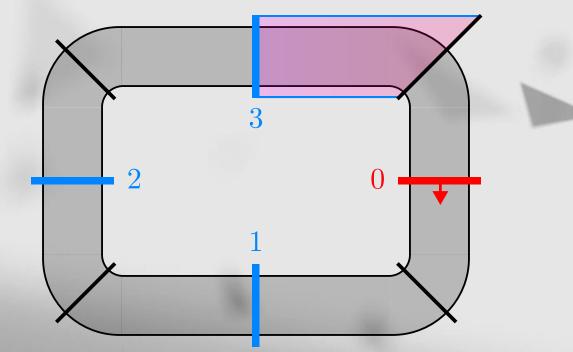


Mario Kart Wii – Ultra-Shortcuts

• These are not as simple as driving backwards though.

 Going in reverse from the finish line will deduct 1 from your lap count. Detected by the spawn checkpoint right behind.

• Usually involves finding glitches or out-of-bounds areas to jump to 3.



Mario Kart Wii – Ultra-Shortcuts

• The *normal* world records didn't last very long after that...

2008-06-01	1′35″799	Ridley	\rightarrow	2019-09-13	0'17"100	Ejay
2008-06-01	1′29″550	Ridley		2019-09-19	0'16"852	Ejay
2008-06-01	1′26″078	Alvin		2019-09-23	0'16"691	Niyake
2008-06-01	1′03″520	Ridley		2019-09-23	0'16"591	Niyake
2008-06-01	0′43″912	Alvin		2019-09-23	0'16"385	Niyake
2008-06-01	0′42″446	Ostro		2020-01-12	0'16"332	Niyake

• Moral of the Story: Use Hamiltonian Circuit detection for lap counting.

Maze Generation

Disjoint Sets & Union-Find

An observation of mazes

- Cells matched with a select few of adjacent cells.
- Others are separated by "walls".
- Can be represented as a graph. Depending on properties of the maze, it can be a minimum spanning tree.
- We can use DFS (Depth-First Search) and BFS (Breadth-First Search) to traverse the maze to find a solution easily from any *S* to any *T*.

Disjoint-Sets

- Sets that have no element in common.
- "Mazes" with every wall put up is a good example, as no cell is connected.
 - Basically a graph without any edges connecting any nodes.
- We have operations: **union** and **find**:
 - Union: Join two disjoint sets together.
 - Find: Get the ID of the set that a cell belongs to.

Disjoint-Sets – Continued

- Union: Join two disjoint sets together.
 - Notated as union(i, j) where $S_i = S_i \bigcup S_j$.
 - In English: All vertices in S_j move into S_i . Then, S_j is *deleted*.
- Find: Get the ID of the set that a cell belongs to.
 - Notated as find(i) where i is a cell ID.
 - More on this in a bit...

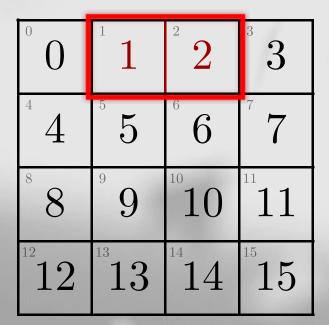
• Assume a graph M where n = 16, and m = 0. Each separate vertex is part of

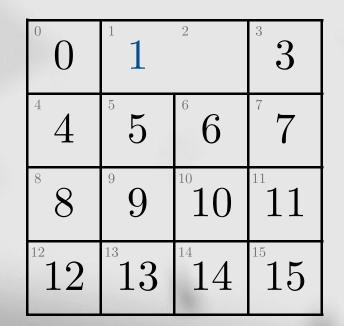
its own set $S_i(v_0 \in S_0, v_1 \in S_1, ..., v_{n-1} \in S_{n-1})$. Show as a 4×4 grid:

0	¹ 1	² 2	³ 3
⁴ 4	C ¹	⁶ 6	7 7
8	⁹ 9	¹⁰ 10	¹¹ 11
¹² 12	¹³ 13	¹⁴ 14	1515

• Let's do union(1,2). Notice how the walls break down between the two.

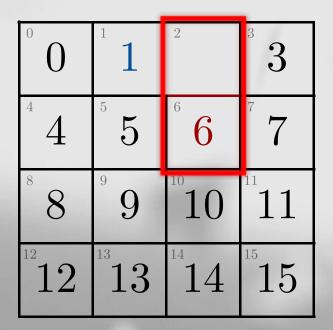
They have an edge between them. Now $S_1 = \{1, 2\}$ and S_2 is deleted.

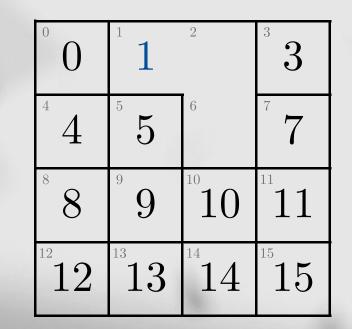




• Let's do union(2, 6). Break down the wall between where 2 used to be and 6.

Now $S_1 = \{1, 2, 6\}$ and S_6 is deleted.



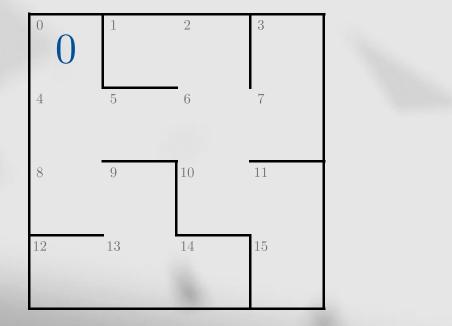


- To properly generate a maze:
 - Repeat the procedure on cells that are

adjacent but are in different groups.

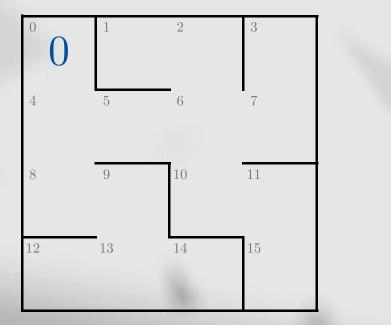
• Do this until there is only one group

left... $S_0 = \{v_0, v_1, ..., v_{n-1}\}$



Disjoint-Sets – Some properties

- Known as Randomised Kruskal's algorithm.
- There are no cycles.
- There is one path from every S to every T.
- Tends to generate mazes with patterns that are easy to solve.
- If shown as a graph, it's a minimal spanning tree.

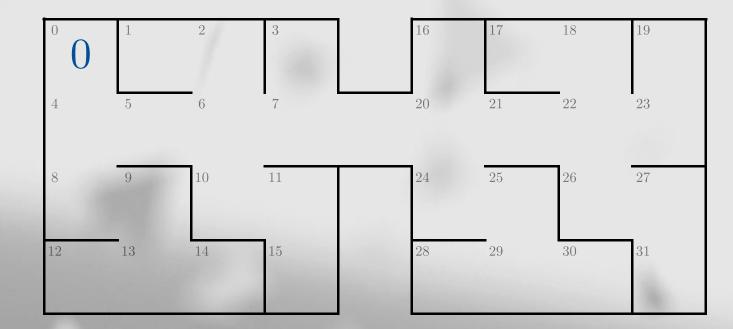


Disjoint-Sets – We can do better

- A simple maze is boring.
- We can connect 2 together by breaking down a wall between them (or even adding a "hall" between them).
- Any cell in one maze is always accessible from any other cell. Connecting like this keeps this property intact as we can always go toward the "hall".
- This makes more complex, interesting, non-square puzzles.

Disjoint-Sets – 2D Expansion

• Horizontal Expansion. Notice how there is always a path from the left maze to the right maze since we can always access 7 and, thus, the "hall" to 20.

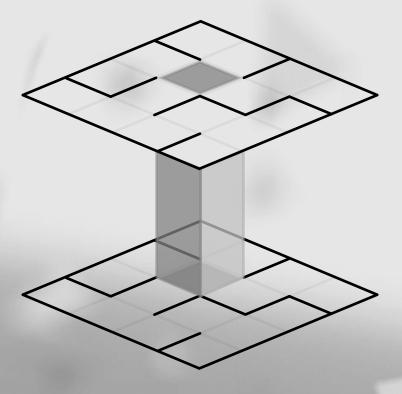


Disjoint-Sets – We can still do better

- We can expand a dimension (or a few).
- Connect 2 mazes together by making a cell have an "elevator" to go up.
- Same property from before still holds. There will always exist a path from one cell to another, even when going up to another floor.

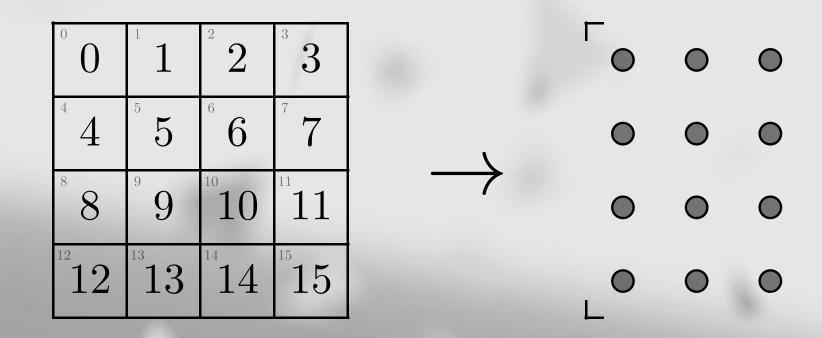
Disjoint-Sets – 3D Expansion

• Floor Expansion. Again, notice how there is always a path from every cell to every other cell.

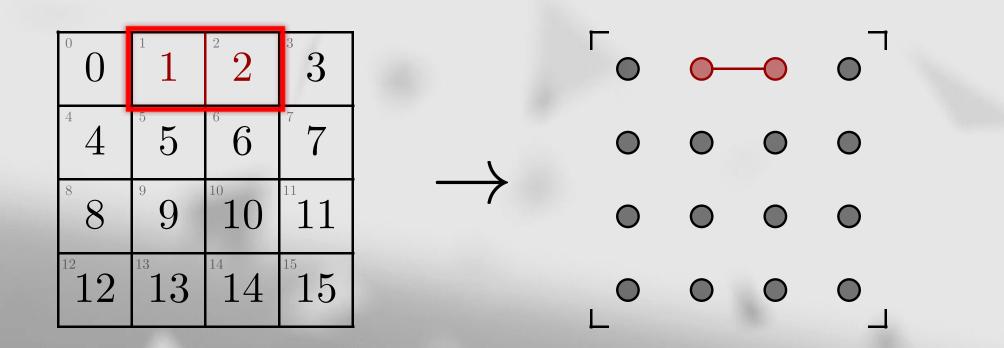


- In theory, union(i, j) on two sets is trivial. To a computer, it requires work.
- Find: Get the ID of the set that a cell belongs to.
 - Notated as find(i) where i is a cell ID.
 - Interpret the set as a graph.
 - Go up to root of the "graph". That is the set's ID.
 - When doing a union(i, j), the ID of two node's set IDs must be different or else a cycle will occur. The lowest index (rank) becomes the new root.

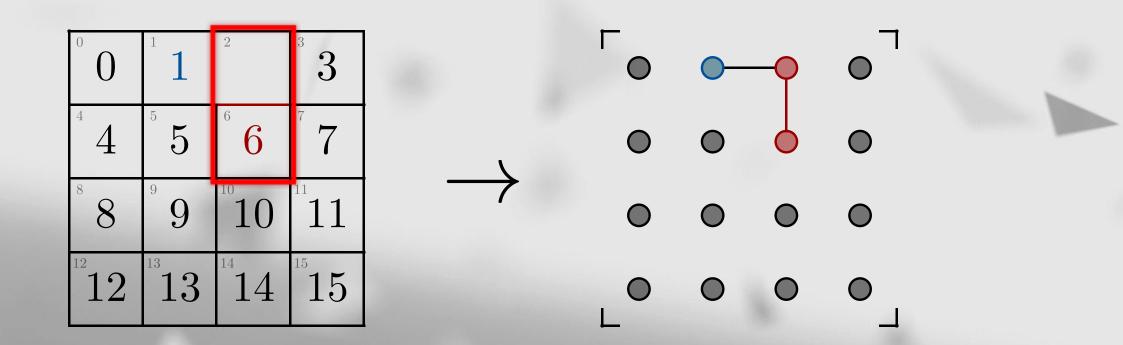
• Interpret maze M as a traditional graph with vertices and edges.



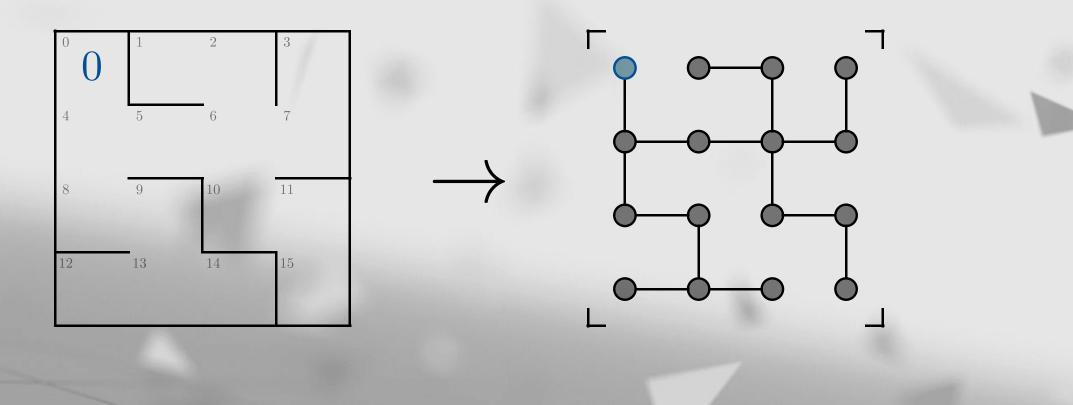
• Let's do union(1,2). Then, find(2) = 1 as $v_2 \in S_1$.



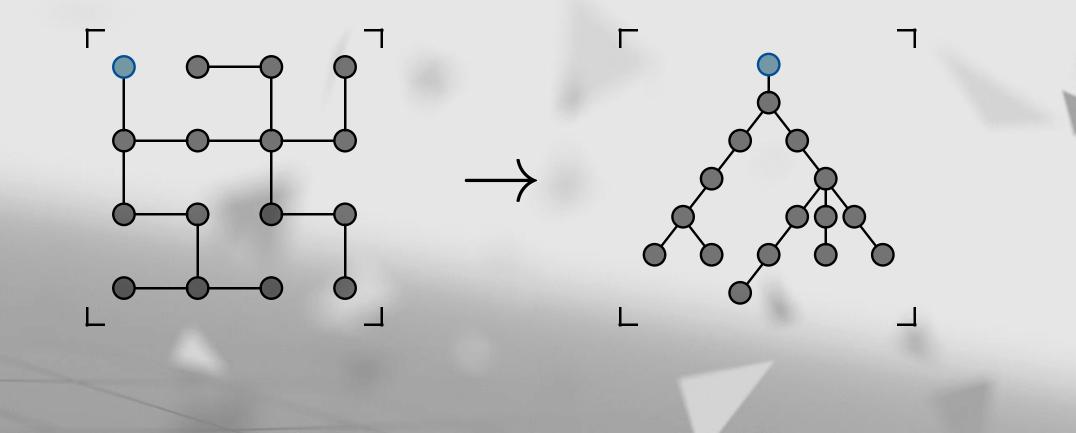
• Okay, now do union(2,6). Then, find(6) = 1 as $v_6 \in S_1$.



• Keep building the minimum spanning tree until entire graph is connected. For every vertex in the final graph, find = 0 as they are all in S_0 .



• This can become bad quickly... The vertex at the bottom right of the maze has to traverse through **6** vertices to reach the root.



- As usual, we can do better... *much better*.
- Let's apply two concepts: Union by rank and Path compression.
 - Union by rank Attach shorter tree to the root of the taller tree.
 - **Path compression** Make every node point straight to the root.

- The original lookup speed requires around *n* lookups to reach the root.
- With our optimisations in place, it becomes $\lg^* n$ (iterated logarithm base 2).
- In the world of Computer Science, this is essentially **constant time**.

$^{\mathrm{n}}\mathrm{a}$	X	$lg^* x$
$^{1}2$	2	1
$^{2}2$	4	2
$^{3}2$	16	3
$^{4}2$	65536	4
${}^{5}2$	2^{65536}	5
62	$2^{2^{65536}}$	6

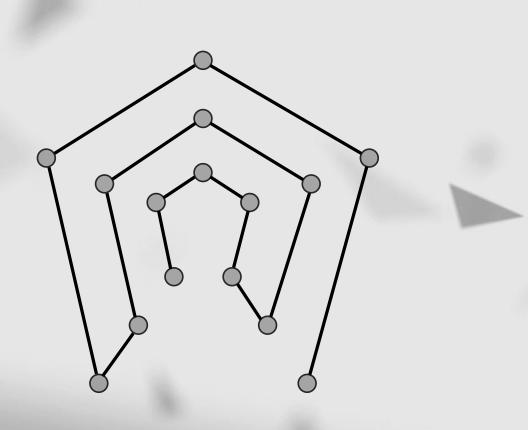
bitDP

Hamiltonian Path Detection

Some of you may have seen this before...

Hamiltonian Paths

- A path where we visit every vertex once.
- NP-Complete.
- For computers, naïvely finding these in a graph of size *N* **explodes** into *N*! steps.
- Detection useful for a game generating random paths and needs to check for correctness before giving to the player.



Naïve Brute-Force Method

- Perform a DFS (Depth-First Search) from the starting vertex *S* search around all possible combinations of paths until we find a Hamiltonian Path.
- Gets the job done, but is nowhere near efficient.

DFS Breakdown

- Assuming a graph G, keep a list $V'(G) = \{\}$ which is the path (in the order we visited the vertices). Mark all vertices as **unvisited**.
- Behold the procedure DFS(v). Run it on DFS(S):
 - 1. Mark v as **visited** and add it to the end of V'(G).
 - 2. Go through every **unvisited** vertex v' that v is connected to and do DFS(v').
 - 3. If the size of V'(G) is equal to the number of vertices in G, a Hamiltonian Path exists!
 - 4. If one wasn't found, remove v from V'(G), mark it as **unvisited**, and go back to the previous call of the procedure.

DFS Example - Setup

• Behold a graph G where $S = v_0$ and $V'(G) = \{\}$. Find if a Hamiltonian Path exists starting from S via DFS(S).

DFS Example - DFS(S)

3

- $v = v_0$
- $V'(G) = \{v_0\}$
- Call $DFS(v_1)$

DFS Example - $DFS(v_1)$

3

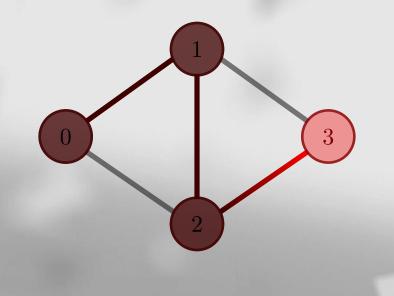
- $v = v_1$
- $V'(G) = \{v_0, v_1\}$
- Call $DFS(v_2)$

DFS Example - $DFS(v_2)$

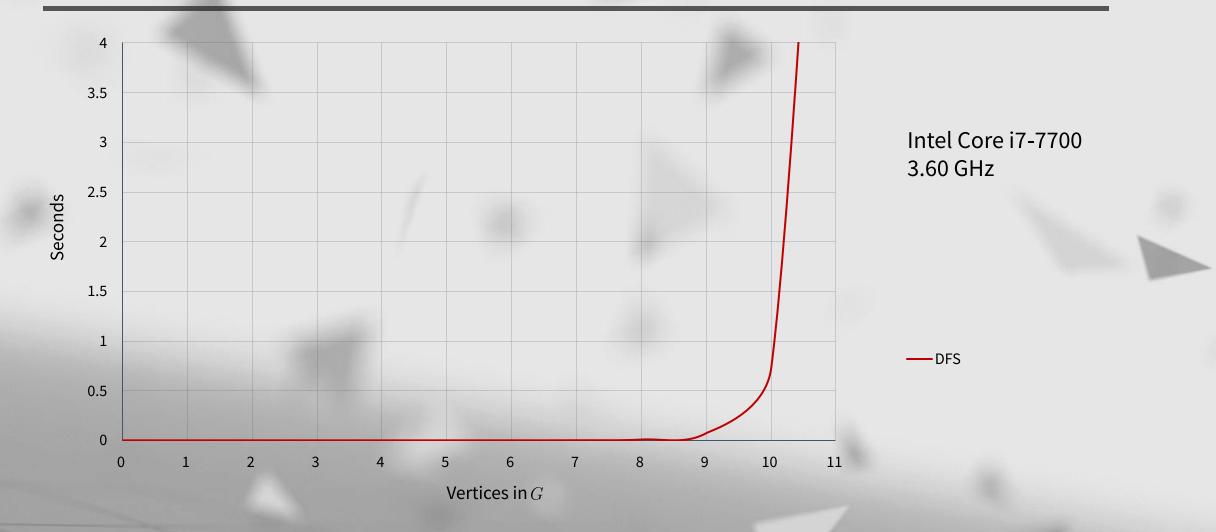
- $v = v_2$
- $V'(G) = \{v_0, v_1, v_2\}$
- Call $DFS(v_3)$

DFS Example - $DFS(v_3)$

- $v = v_3$
- $V'(G) = \{v_0, v_1, v_2, v_3\}$
- The size of V'(G) is 4. Hamiltonian Path found.



DFS – Performance Analysis



Let's bash DFS for a sec

- Multiple repeated function calls
- We have to check if we visited a vertex or not
- This is naïve brute-force. We aren't taking advantage of any "properties".
- We can do better... *much better*.

Dynamic Programming (DP)

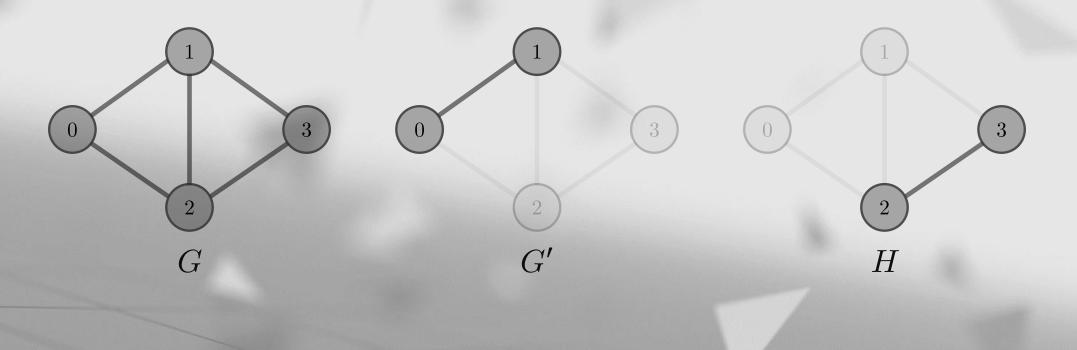
- Mathematical Optimisation by Richard Bellman
- Break a problem down into easier "sub-problems", solve those, and use the result to solve the original problem.
- "Sub-problems" are broken down into even easier "sub-problems" if possible, recursively.

Held-Karp Algorithm

- Proposed by Michael Held and Richard Karp, as well as independently by Richard Bellman in 1962.
- Utilises DP to solve "sub-problems" of a graph, preventing repeating traversals if a solution is already known.
- Reduces DFS's O(N!) time to $O(2^N \times N^2)$. A significant improvement.
- This was mainly for solving TSP (Travelling Salesman Problem). But the variant here will solve for Hamiltonian Paths.

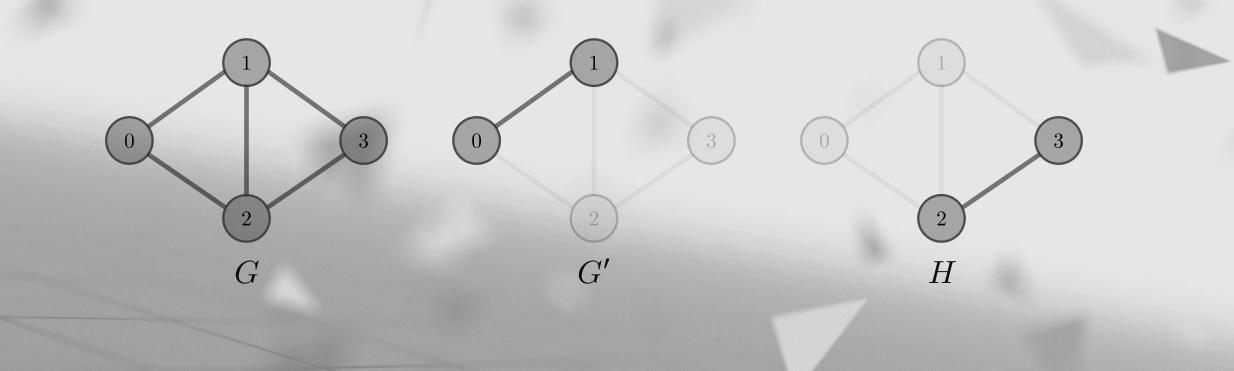
Held-Karp – An Observation

- **Observation:** Assume a graph G, a subgraph G', and H = G G'.
- If there is a Hamiltonian Path in G' and a vertex in G' is adjacent to a vertex v in H in G, then there is a Hamiltonian Path in a subgraph G' + v.



Held-Karp – Example

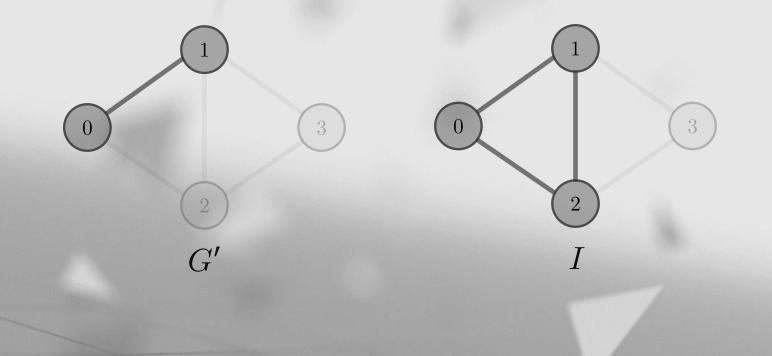
- Assume a graph G, a subgraph G', and H shown below.
- It's trivial to tell that G' has a Hamiltonian Path $\{v_0, v_1\}$.



Held-Karp – Example

- Now let's look at a new sub-graph, I where $V(I) = \{v_0, v_1, v_2\}$.
- We know there was a Hamiltonian Path in G'. I has the same vertices plus v_2 .

Since any vertex in $G'(v_0 \text{ or } v_1)$ can reach v_2 , it also has a Hamiltonian Path.



bitDP

- ・ bitDP = **Bit D**ynamic **P**rogramming (ビット動的計画法)
- Use a DP table where **vertices** go on one side and **bitmasks** go on the other.
 - Bitmask represents subgraphs of G.
- Table is sized $N \times 2^N$.
 - e.g. Graph with 4 vertices has 16 subgraphs, from 0000 to 1111.
- At the final mask (1111), if **any** value is set to 1, there is a Hamiltonian Path in the graph *G*!

bitDP – Example (Reading the table)

• Make a bitDP table based on the graph:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3

0

2

bitDP – Example (Reading the table)

• Make a bitDP table based on the graph:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1
2	0	0	0	0	1	1	1	1	0	0	0	0	1	0	1	1
3	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1

3

0

2

bitDP – Example (Reading the table)

- Consider Mask at 0xB (1011):
 - Vertices Visited: 0, 1, 3

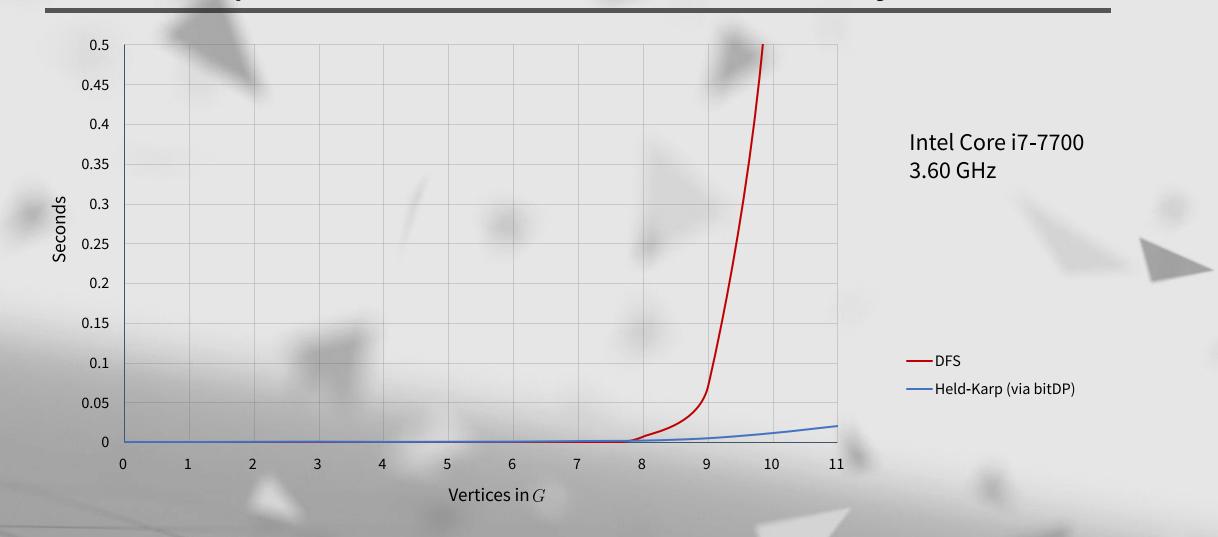
1001	1010	1011	1100	1101	4 4 0
9	А	В	С	D	
0	0	1	0	1	
0	1	0	0	0	
0	0	0	1	0	
0	1	1	1	1	

3

2

- Is there a path between those three that:
 - Ends at 0? Yes
 - Ends at 1? No
 - Ends at 3? Yes

Held-Karp (via bitDP) – Performance Analysis

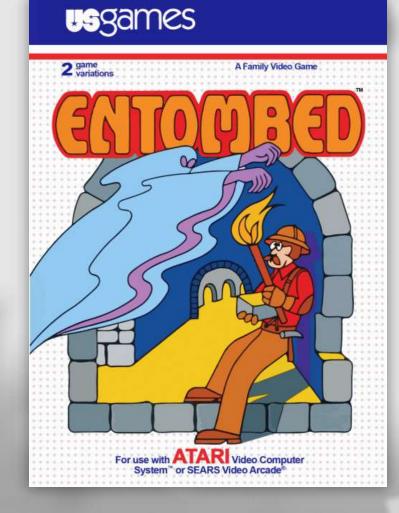


Honourable Mention

Maze Generation, Part II

You thought I was done...

Entombed for Atari 2600 (1982)



Entombed for Atari 2600

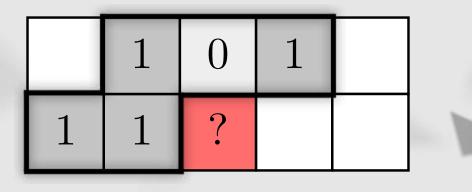
- Released in 1982.
- Simple design. Player moves through a maze trying to avoid enemies. Contact with enemies results in a game over.
- Maze moves upwards.
- If a player is stuck in a dead end, it's also a game over.

Entombed for Atari 2600 – The Technical Details

- Storing all possible mazes in memory is impossible.
- Mazes were generated "on -the-fly".
- Right side is just a mirrored version of the left side.
- Didn't use Disjoint-Sets with Union-Find. How did they do it?

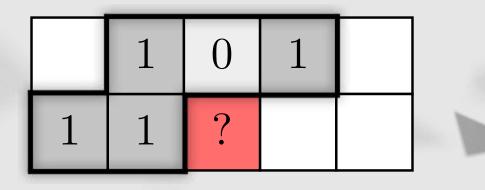
Entombed for Atari 2600 – Maze Generation

- Programmer was **drunk** and developed an "algorithm" for it.
- A cell is set by looking at 5 nearby squares, then looking up information in a lookup table.
- Generates a playable maze... every time... somehow.



Entombed for Atari 2600 – Maze Generation

- Why does this work? No one knows why.
- When programmer was interviewed, he said it came from another programmer.
- Said "He told me it came upon him when he was drunk and whacked out of his brain".
- It's even on the Wikipedia page for "List of unsolved problems in computer science".



Entombed for Atari 2600 – Lookup Table

		с	d	е	a
1	a	b	x		0

)	a	b	с	d	е	х	a	b	с	d	e	x
	0	0	0	0	0	1	1	0	0	0	0	1
	0	0	0	0	1	1	1	0	0	0	1	1
	0	0	0	1	0	1	1	0	0	1	0	1
	0	0	0	1	1	?	1	0	0	1	1	?
	0	0	1	0	0	0	1	0	1	0	0	0
	0	0	1	0	1	0	1	0	1	0	1	0
	0	0	1	1	0	?	1	0	1	1	0	0
	0	0	1	1	1	?	1	0	1	1	1	0
	0	1	0	0	0	1	1	1	0	0	0	?
	0	1	0	0	1	1	1	1	0	0	1	0
	0	1	0	1	0	1	1	1	0	1	0	1
	0	1	0	1	1	1	1	1	0	1	1	?
	0	1	1	0	0	?	1	1	1	0	0	?
	0	1	1	0	1	0	1	1	1	0	1	0
	0	1	1	1	0	0	1	1	1	1	0	0
	0	1	1	1	1	0	1	1	1	1	1	0

How does it relate to Graph Theory?

- It's unsolved, and we know other maze generation algorithms are constructed from graphs, maybe there's an explanation that involves Graph Theory?
- Apparently, you have to be drunk to make cool stuff...

References

- "Held-Karp Algorithm." *Wikipedia*, Wikimedia Foundation, 19 Feb. 2019, <u>https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm</u>.
- "Mario Kart Wii." *Wikipedia*, Wikimedia Foundation, 11 Feb. 2020, <u>https://en.wikipedia.org/wiki/Mario_Kart_Wii</u>.
- Summoning Salt. "Mario Kart Wii: The History of the Ultra Shortcut" YouTube, 11 Feb. 2020, https://www.youtube.com/watch?v=mmJ_LT8bUj0.
- "Entombed (Atari 2600)." *Wikipedia*, Wikimedia Foundation, 11 Feb. 2020, <u>https://en.wikipedia.org/wiki/Entombed_(Atari_2600)</u>.
- Aycock, John and Tara Copplestone. "Entombed: An archaeological examination of an Atari 2600 game." *Programming Journal 3* (2018): 4.
- "Nguyễn, Clara". "Hamiltonian Paths & bitDP." Hamiltonian Paths & bitDP, 11 Feb. 2020, <u>http://utk.claranguyen.me/talks.php?id=bitdp</u>.
- "Grumble Volcano." MKWii WR History, https://mkwrs.com/mkwii/display.php?track=Grumble+Volcano.

Discussion

Questions

- Given a 3D model *M* of *n* vertices, how many triangles are drawn if done via Triangle List?
- What is the $lg^*(2^{2^{65536}})$? Alternatively, what is the $lg^*(^62)$?
- What does bitDP stand for?

Graph Theory Applications in Video Games

Clara Nguyễn COSC 594 – 2020/03/11