' ‘;;
%

. Graph Theory Applications in Video Games

Clara Nguyen
COSC 594 - 2020/03/11

Questions

* Given a 3D model M of n vertices, how many triangles are drawn if done via

Triangle List?

265536

 What isthe Ig*(2°" ")? Alternatively, what is the [g*(°2)?

 What does bitDP stand for?

About me

* Master’s Student on Course-Only track.

* Did undergrad at UTK. Graduated in
Spring 2018.

 Hobbies

* Game/Web Development

» Content Creation (Music & Video)

* Born in Knoxville, TN! Look outside a

window for a picture if you want.

More on me!

* Been Programming since | was 6. | like to

do side projects on the side.
* Not actually a gamer.
* Been a TA here for around 4 years.

* Qutside of Computer Science, my goal is

to become a polyglot of Asian Languages.

* Not a pet person... (But | prefer cats btw)

Showcase - Game Development History

* Involved since mid-2008

* Worked with other Indie teams

* In-house Engine Development. KEVbOUI’d Hero

v7.5 Edition

* 2014 - Solo Project: “Keyboard Hero”
* Rhythm Game like Guitar Hero

* Released on Gamejolt

e Coded in GML, Delphi, and C++
* Over 63,000 views and 16,000 plays

Showcase - Keyboard Hero V7.5

I '7 | Flashback CD Intro Theme (Keyboard Hero Mix) (4:36)
[ock

5 Mix) |

ix) L uigi Maufremme
Listen

Options/Debug
Practice Song
Replays

Difficulties [lsige)

Yo e Fe Yo Yo G

) Lutgﬁlcj

Theater

High Score

IELNEN
@ KAk
(CR ¢ ¢:0-¢
O *v
@

Guitar Yes
Bass Yes
Drums No
Keys No

Yes
Yes
No
No

Yes
Yes
No
Yes

Showcase - Game Development History

e 2017 - Solo Project: “Project RX”

* Successor to previous game.

» Had composers create music

specifically for the game.
* Over 20 songs charted.

* Engine written in C++ entirely from

scratch.

e Unreleased as of 2020.

Showcase - Game Development History

« 2017 - CN_GL (Clara Nguyen’s WebGL
Wrapper)

» Concept 3D engine written entirely from

scratch to be playable in your web browser.
» Written entirely from scratch in 52 hours.

* Thisis playable!
http://web.eecs.utk.edu/~ssmit285/vORIcCEmA/finalp/

Why game dev experience matters

* |t’s one thing to play games. It’s another to develop them.

* Code can’t be written sloppily. Usually has to generate and draw 30 -60

frames onto your monitor on modern hardware.

* |t’s extremely obvious when a game is poorly optimised.

* There’s lots of unique problem solving in Game Dev. You often build a

“toolbox” of ways to approach a problem over time.

* Relevance-wise, Graph Theory plays a huge role in game development.

Disclaimers

 This is not your average talk.

* Thisis a Graph “Theory” talk... | only give a handful of game mentions and

stick to concepts.

* Algorithm discussion is minimal. If | mention an algorithm, then Il tell you

what it should do, not go over the procedure (except for DFS).

» Topics are laid out intentionally to where they all may not be discussed.

* All topics and details are here: https://tiny.utk.edu/talk5

Outline

The Warmup - “Rules” of Graphics

Racing Games - Lap Counting

Maze Generation - Disjoint Sets & Union-Find

Hamiltonian Path Detection - bitDP

Honourable Mentions

Discussion

“Rules” of Graphics

The “rules” of graphs of computer graphics

* Unlike most graphs we dealt with in class, the rules change here:
* Vertices have positional coordinates (x, y, z) to define position in space.
* There is only one way to represent graphs in space.
» Edges (connections between vertices) are implied.

* Everything is oriented around triangles.

The “rules”: Edge Implication

* Edge Implying depends on how we tell the computer to draw.

* Several modes. Here are the common ones:
 Triangle List: Every 3 vertices form a triangle.

* Triangle Strip: First 3 vertices form a triangle. Every new vertex after will

form a triangle with the previous 2 vertices.

* Triangle Fan: First vertex is in every triangle. Each set of 2 vertices after

the first form a triangle with the first vertex.

The “rules”: Triangle List

 Naive triangle drawing in multiples of 3.
* n/3 triangles drawn.
* Assume we are given a model m where V(m) = {vy, v9, v3, vy, v5, V6 }

K

The “rules”: Triangle Strip

 Uses previous 2 vertices & new one to form triangles.
* n > 3.n — 2triangles drawn.

* Assume we are given a model m where V(m) = {vy, v, v3, 04}

V,

] V.

2

The “rules”: Triangle Fan

* Uses first vertex and latest 2 vertices to form triangles.
* n > 3.n — 2triangles drawn.

* Assume we are given a modelm where V(m) = {vy, vo, v3, vy, V5 }

The “rules”: Coordinate System

» Two of the most popular cartesian coordinate systems for 3D space:
* (x,y, z) where z is the height axis

* (x,y, z) where y is the height axis

The “rules”: Back-Face Culling

* Front side has a triangle. Back side is invisible due to back-face culling.

* Relies on the order we draw the vertices. Vertices with order being

clockwise is front-facing. Counter-clockwise is the back.

Lap Counting

Racing Games

Lap Counting - The Basics

* Aracing game must keep track of a few things...
* Player Lap
 Player Position

 Distance between players

* How do games know when a player has completed a lap?

Lap Counting - The Basics

» Assume the following (extremely simple) racetrack:

Lap Counting - The Basics

 Divide the track into “checkpoints”.

 Players will have to hit all “checkpoints” and the finish line for a lap to count.

* This can be implemented as a directed graph where all checkpoints are

vertices and a complete lap is a Hamiltonian Circuit.

Lap Counting - The Basics

» Simple racetrack broken up into checkpoints, and as a directed graph:

g——

16 Y

Distance between players

* How will we know how far someone is from first place?

* Graph is broken segments by-vertex, rearranged into a straight line with

circular ending node, making distance computation extremely trivial.

1

Ny

D

>

N\
L/

%(’*"

-

Distance between players

* So let’s say Dr. Langston (;) having a really good race... unlike me (Py)...

S > P, P,
o 1 1
0) ; O — C+’+o’¢’+’+’+’+o’+>
3
O
O+

Lap Counting — Breaking the Rules

* |n practice, there are other ways to do lap counting... besides Hamiltonian

circuit detection.

* They flopped. Let’s look at an extreme example.

Mario Kart Wii for Nintendo Wii (2008)

@ Wi |

Mario Kart Wii - Breaking it down

* Breaks track into spawn checkpoints.

* If you fall out of the track, you spawn at these.

* Breaks track into key checkpoints.
 Finish line also counts as a key checkpoint.

 Tells where you are and if you completed the lap... or do they?

Mario Kart Wii - Breaking it down

» Assume the following (extremely simple) racetrack with key checkpoints,

spawn checkpoints, and a finish line:

N

3

| 4 —

Mario Kart Wii - Breaking it down

» Going between a key checkpoint and a next checkpoint (spawn, key, finish)

updates where you are in the track.

« Example: Hitting between 1 and the
spawn checkpoint right after will
register as you passing through

checkpoint 1.

N

e

_2

b,

Mario Kart Wii - Ultra-Shortcuts

* Critical Flaw: Game allows you to hit the next, current, and previous key

checkpoints. Completing a lap requires hitting only the last one.

* From the start of the race, we can avoid
going through 1 and 2. Just jump to 3

and drive up to 0. The lap will count.

* Thisis known as an Ultra-Shortcut.

N

_2

3

0

'

X
N

Mario Kart Wii - Ultra-Shortcuts

* These are not as simple as driving backwards though.

* Going in reverse from the finish line will

deduct 1 from your lap count. Detected

by the spawn checkpoint right behind.

 Usually involves finding glitches or

~
W

out-of-bounds areas to jump to 3.

ATX

Mario Kart Wii - Ultra-Shortcuts

* The normal world records didn’t last very long after that...

2008-06-01
2008-06-01
2008-06-01
2008-06-01

2008-06-01
2008-06-01

1'35"799
129”550
126”078
1'03"520
0437912
0'42"446

Ridley
Ridley
Alvin
Ridley
Alvin
Ostro

2019-09-13
2019-09-19
2019-09-23
2019-09-23
2019-09-23
2020-01-12

017”100
016”852
0'16"691
016”591
016”385
016”332

Ejay
Ejay
Niyake
Niyake
Niyake
Niyake

» Moral of the Story: Use Hamiltonian Circuit detection for lap counting.

Maze Generation

Disjoint Sets & Union-Find

An observation of mazes

* Cells matched with a select few of adjacent cells.

» Others are separated by “walls”.

» Can be represented as a graph. Depending on properties of the maze, it can

be a minimum spanning tree.

* We can use DFS (Depth-First Search) and BFS (Breadth-First Search) to

traverse the maze to find a solution easily from any Sto any T.

Disjoint-Sets

» Sets that have no element in common.

* “Mazes” with every wall put up is a good example, as no cell is connected.

 Basically a graph without any edges connecting any nodes.

* We have operations: union and find:
* Union: Join two disjoint sets together.

 Find: Get the ID of the set that a cell belongs to.

Disjoint-Sets — Continued

 Union: Join two disjoint sets together.
* Notated as union(i, j) where S; = S; U S

* In English: All vertices in \S; move into 5;. Then, S; is deleted.

* Find: Get the ID of the set that a cell belongs to.

* Notated as find(z) where ¢ is a cell ID.

* More on thisin a bit...

Disjoint-Sets - Example

* Assume a graph M where n = 16, and m = 0. Each separate vertex is part of

its own set S;(vg € Sp,v1 € S1,.ees U1 € S,_1).Showasa 4 X 4 grid:

Ol | 2 485
4056|717
819 (10]11
1213 (14|15

Disjoint-Sets — Example

* Let’sdo union(1,2). Notice how the walls break down between the two.

They have an edge between them. Now 57 = {1,2} and S, is deleted.

ol1 |3
4015167
— sl 100

Disjoint-Sets - Example

e Let’sdo union(2,6). Break down the wall between where 2 used to be and 6.

Now S; = {1,2,6} and Sg is deleted.

ol1 |3
4015 |7
— [l9 101

1211311415

Disjoint-Sets - Example

* To properly generate a maze:

» Repeat the procedure on cells that are

adjacent but are in different groups. 0 1

* Do this until thereis only one group

left... S() =S {Uo,’Ul, ...,?}n_l}

Disjoint-Sets - Some properties

Known as Randomised Kruskal’s algorithm.

There are no cycles.

* Thereis one path from every S'to every T. N 0 l
* Tends to generate mazes with patterns that 4 5 6
are easy to solve. : "

If shown as a graph, it’s a minimal spanning

tree.

Disjoint-Sets — We can do better

* Asimple maze is boring.

* We can connect 2 together by breaking down a wall between them (or even

adding a “hall” between them).

* Any cell in one maze is always accessible from any other cell. Connecting like

this keeps this property intact as we can always go toward the “hall”.

* This makes more complex, interesting, non-square puzzles.

Disjoint-Sets — 2D Expansion

» Horizontal Expansion. Notice how there is always a path from the left maze

to the right maze since we can always access 7 and, thus, the “hall” to 20.

0 1 2 3 16 17 18 19

0

Disjoint-Sets — We can still do better

* We can expand a dimension (or a few).
* Connect 2 mazes together by making a cell have an “elevator” to go up.

« Same property from before still holds. There will always exist a path from

one cell to another, even when going up to another floor.

Disjoint-Sets - 3D Expansion

* Floor Expansion. Again, notice how there is always a path from every cell to

every other cell.

Disjoint-Sets - Find operation

* Intheory, union(i, 7) on two sets is trivial. To a computer, it requires work.

 Find: Get the ID of the set that a cell belongs to.
 Notated as find(i) where i is a cell ID.
* Interpret the set as a graph.
* Go up to root of the “graph”. That is the set’s ID.

« When doing a union(i, j), the ID of two node’s set IDs must be different

or else a cycle will occur. The lowest index (rank) becomes the new root.

Disjoint-Sets - Find operation

* Interpret maze M as a traditional graph with vertices and edges.

ol1]2]3 ‘o o ©
45067 @ © ©
819 (1011 — @ © ©
12131415 © o o

Disjoint-Sets - Find operation

* Let’sdo union(1,2).Then, find(2) =1 as v, € 5] .

-
@ OO
@ O O
© O O
© O O
-

Disjoint-Sets - Find operation

* Okay, now do union(2,6). Then, find(6) =1 as v, € 5.

I_.

.ol
% © O O

I_..‘

Disjoint-Sets - Find operation

* Keep building the minimum spanning tree until entire graph is connected.

For every vertex in the final graph, find = 0 asthey are allin .5, .

0

8 (
12 13 14 15
O I O I

0 1 2 ‘ 3 []

Disjoint-Sets - Find operation

* This can become bad quickly... The vertex at the bottom right of the maze
has to traverse through 6 vertices to reach the root.

r i r i
OHI

%

o
-l

Disjoint-Sets - Find operation

* As usual, we can do better... much better.

* Let’s apply two concepts: Union by rank and Path compression.
« Union by rank - Attach shorter tree to the root of the taller tree.

» Path compression - Make every node point straight to the root.

Disjoint-Sets - Find operation

* The original lookup speed requires around n lookups to reach the root.

» With our optimisations in place, it becomes lg* n (iterated logarithm base 2).

n

>

* In the world of Computer Science, this X lg ™%

1

2

4

16
65536

65536
2

is essentially constant time.

()

S

ot w
DO DO DN

(=

SH IOl T WIND| =

965536

bitDP

Hamiltonian Path Detection

Some of you may have seen this before...

Hamiltonian Paths

* A path where we visit every vertex once.

* NP-Complete.

* For computers, naively finding these in a

graph of size [NV explodes into V! steps.

 Detection useful for a game generating

random paths and needs to check for

correctness before giving to the player.

Nailve Brute-Force Method

* Perform a DFS (Depth-First Search) from the starting vertex S search around

all possible combinations of paths until we find a Hamiltonian Path.

* Gets the job done, but is nowhere near efficient.

DFS Breakdown

» Assuming a graph G, keep a list V'(G) = {} which is the path (in the order

we visited the vertices). Mark all vertices as unvisited.

* Behold the procedure DFS(v). Runiton DFS(S):
1. Markwv as visited and add it to the end of V'(G).
2. Go through everyunvisited vertex v’ that v is connected to and do DF'S(v'").
3. Ifthesize of V'(G) is equal to the numberof vertices in GG, a Hamiltonian Path exists!

4. If one wasn’t found, remove v fromV'(G), mark it as unvisited, and go back to the

previous call of the procedure.

DFS Example - Setup

» Behold a graph G where S = v, and V'(G) = {}. Find if a Hamiltonian Path
exists starting from Svia DEF'S(S).

DFS Example - DFS(S)
* UV = 7y
+ V'(G) = {u}

« Call DFS(v,)

DFS Example - DF'S(v;)
* V=11
* VI(G) = {vo, v1 }

« Call DFS(vy)

DFS Example - DF'S(v5)

* UV = V9
¢ V/(G) — {?}0,”01,7)2}

+ Call DFS(v3)

DFS Example - DF'S(v3)

* VUV = Vs
y V/(G) — {’0077117’027713}

* Thesize of V'(G) is 4. Hamiltonian Path found.

DFS - Performance Analysis

Seconds

4

3.5

3

2.5

2

1.5

1

0.5

Vertices inG

10

11

Intel Core i7-7700
3.60 GHz

—DFS

L et’s bash DFS for a sec

» Multiple repeated function calls
* We have to check if we visited a vertex or not
 This is naive brute-force. We aren’t taking advantage of any “properties”.

 We can do better... much better.

Dynamic Programming (DP)

e Mathematical Optimisation by Richard Bellman

* Break a problem down into easier “sub-problems”, solve those, and use the

result to solve the original problem.

* “Sub-problems” are broken down into even easier “sub-problems” if

possible, recursively.

Held-Karp Algorithm

* Proposed by Michael Held and Richard Karp, as well as independently by
Richard Bellman in 1962.

» Utilises DP to solve “sub-problems” of a graph, preventing repeating

traversals if a solution is already known.
* Reduces DFS’s O(N!) time to O(2" x N?). Asignificant improvement.

 This was mainly for solving TSP (Travelling Salesman Problem). But the

variant here will solve for Hamiltonian Paths.

Held-Karp — An Observation

* Observation: Assume a graph G, asubgraph G',and H =G — G'.

* If there is a Hamiltonian Path in G' and a vertex in GG’ is adjacent to a vertex v

in Hin G, then there is a Hamiltonian Path in a subgraph G" + v.

Held-Karp - Example

* Assume a graph GG, a subgraph G, and H shown below.

* It’s trivial to tell that G’ has a Hamiltonian Path {vg, v1 }.

Held-Karp - Example

* Now let’s look at a new sub-graph, I where V(1) = {vg, v, v2}.

» We know there was a Hamiltonian Path in G'. I has the same vertices plus v,.

Since any vertex in G’ (v, or v;) can reach v,, it also has a Hamiltonian Path.
(U :

G’ A

bitDP

B I T Z3TEFLHLKIES

* bitDP = Bit Dynamic Programming (E v N &)895TEIE)

* Use a DP table where vertices go on one side and bitmasks go on the other.
 Bitmask represents subgraphs of G.

e Tableissized N x 2.

* e.g. Graph with 4 vertices has 16 subgraphs, from 0000 to 1111.

» At the final mask (1111), if any value is set to 1, there is a Hamiltonian Path in

the graph G!

bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

ITTI

OTTT

T0TT

00TT

TT0T

OTOT

T00T

000T

TTTO

OTTO

TOTO

00TO

TT00

0100

T000

0000

0

Vertex/Mask

bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

ITTI

OTTI

T0TT

00TT

TT0T

OT0T

T00T

000T

TTTO

OTTO

TOTO

00TO

TT00

0100

T000

0000

0

Vertex/Mask

bitDP - Example (Reading the table)

* Consider Mask at 0xB (1011): Q
 Vertices Visited: 0, 1, 3 o e
9 A B C D * |Isthere a path between those three that:
1 1

e Endsat0?Yes
e Endsat1?No

1 |1]|1]|1 e Ends at3?Yes

Held-Karp (via bitDP) - Performance Analysis

0.5

0.45

0.4

0.35

0.3

0.25

Seconds

0.2

0.15

0.1

0.05

Vertices inG

Intel Core i7-7700
3.60 GHz

—DFS
——Held-Karp (via bitDP)

Honourable Mention

Maze Generation, Part ||

You thought | was done...

Entombed for Atari 2600 (1982)

2 game A Family Video Game
variations

o

For use with ATAR' Video Computer

System™ or SEARS Video Arcade™

Entombed for Atari 2600

 Released in 1982.

» Simple design. Player moves through a
maze trying to avoid enemies. Contact with

enemies results in a game over.

e Maze moves upwards.

* |f a playeris stuckin a dead end, it’s also a

game ovetr.

Entombed for Atari 2600 — The Technical Details

Storing all possible mazes in memory is impossible.

Mazes were generated “on-the-fly”.

Right side is just a mirrored version of the left side.

Didn’t use Disjoint-Sets with Union-Find. How did they do it?

Entombed for Atari 2600 — Maze Generation

* Programmer was drunk and developed

an “algorithm” for it.

» Acellis set by looking at 5 nearby squares,

then looking up information in a lookup

table.

e Generates a playable maze... every time...

somehow.

Entombed for Atari 2600 — Maze Generation

* Why does this work? No one knows why.

* When programmer was interviewed, he

said it came from another programmer.

 Said “He told me it came upon him when

he was drunk and whacked out of his brain”.

* |t’s even on the Wikipedia page for “List of

unsolved problems in computer science”.

Entombed for Atari 2600 - Lookup Table

How does it relate to Graph Theory?

* |t’s unsolved, and we know other maze generation algorithms are
constructed from graphs, maybe there’s an explanation that involves Graph

Theory?

» Apparently, you have to be drunk to make cool stuff...

References

* "Held-Karp Algorithm." Wikipedia, Wikimedia Foundation, 19 Feb. 2019,
https://en.wikipedia.org/wiki/Held%E2%80%93Karp algorithm.

« "Mario Kart Wii." Wikipedia, Wikimedia Foundation, 11 Feb. 2020, https://en.wikipedia.org/wiki/Mario_Kart_Wii.

* Summoning Salt. "Mario Kart Wii: The History of the Ultra Shortcut" YouTube, 11 Feb. 2020,
https://www.youtube.com/watch?v=mmJ_LT8bUj0 .

* "Entombed (Atari 2600)." Wikipedia, Wikimedia Foundation, 11 Feb. 2020,
https://en.wikipedia.org/wiki/Entombed_(Atari_2600).

* Aycock, John and Tara Copplestone. "Entombed: An archaeological examination of an Atari 2600 game." Programming
Journal 3 (2018): 4.

» "Nguyén, Clara". "Hamiltonian Paths & bitDP." Hamiltonian Paths & bitDP, 11 Feb. 2020,
http://utk.claranguyen.me/talks.php?id=bitdp .

* “Grumble Volcano.” MKWii WR History, https://mkwrs.com/mkwii/display.php?track=Grumble+Volcano.

Discussion

Questions

* Given a 3D model M of n vertices, how many triangles are drawn if done via

Triangle List?

265536

 What isthe Ig*(2°" ")? Alternatively, what is the [g*(°2)?

 What does bitDP stand for?

' ‘;;
%

. Graph Theory Applications in Video Games

Clara Nguyen
COSC 594 - 2020/03/11

