
Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen

COSC 581 - 04/04/2019



• What is a Hamiltonian Path?

• What does bitDP stand for?

• What is the time complexity for finding a Hamiltonian Path via DFS? What 

about via the Held-Karp Algorithm?

Questions



About Us



• Master’s Student on Course-Only track.

• Did undergrad at UTK

• Hobbies:

• Video Games

• Coding!

• Music Production

• Born here! Look outside a window for a 

picture if you want.

Clara Nguyen



• Master’s Student on thesis track.

• Focus on Computer Vision

• Did undergrad at UTK

• Lived in Knoxville since 2011

• Hobbies:

• Drawing

• Hiking

• 50cc 2 stroke scooters

Natalie Bogda



• What are Hamiltonian Paths?

• The Problem – RainbowGraph

• DFS – The Naïve Approach

• Held-Karp – The Clever Approach via bitDP

• bitDP – Can we go even faster?

• Discussion

Outline



What are Hamiltonian Paths?



• A path on a graph that visits each vertex exactly once.

• Finding these is an NP-complete problem.

Hamiltonian Paths



The Problem - RainbowGraph



• Topcoder Problem (SRM 720, D2, 1000-Pointer)

• Find number of Hamiltonian Paths in entire graph

• Have to count such paths between every possible vertex.

• via Naïve algorithms, this can easily hit 𝑂(𝑁!) time.

• Each vertex has a color. If you visit one vertex of a specific color, you have to 

visit all vertices of the same color before going to another.

The Problem - RainbowGraph



• How many Hamiltonian Paths can you find?

The Problem - RainbowGraph



DFS – The Naïve Approach



function dfs(a) {
visited[a] = true;

if we visited all nodes in graph,
return true;

for b is 0 to n - 1
if (visited[b] == false)

dfs(b);

// backtrack
visited[a] = false;

return false;
}

Depth First Search



• Very naïve way to approach this problem.

• DFS solves the problem in 𝑂(𝑁!) time

• Visit all permutations of vertices in the graph

• Each iteration, it will traverse the permutation to see if adjacent vertices 

are connected

• Therefore 𝑂 𝑁 × 𝑁! = 𝑂 𝑁!

Depth First Search



0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11

S
ec

o
n

d
s

Vertices in Graph

DFS

Depth First Search Performance

Intel Core i7-7700
3.60 GHz



• 45/70 Test Cases complete.

• Too slow!

DFS on Topcoder (RainbowGraph)



Held-Karp – The Clever Approach via bitDP



• Problems:

• Multiple repeated function calls.

• Have to check whether we visited a vertex or not.

• Recursion.

• There are properties of these graphs we aren’t taking advantage of.

• We have to be clever.

DFS, can we improve it?



• Dynamic Programming? Memoization?

• Many sub-problems and their results can be cached for later.

• Reduces the problem down significantly.

• If A can go to B, than B can go to A.

• Use Adjacency Matrix for 𝑂(1) lookups. Use Adjacency List for iteration.

• Eliminate recursion as much as possible.

• Can we get rid of recursion entirely?

DFS, can we improve it?



• Dynamic programming approach developed by Richard Bellman, Michael 

Held, and Richard Karp in 1962.

• Solves “sub-problems” to speed up more expensive traversals.

• Determining if a path exists from A to B becomes 𝑂 𝑁2 .

• Reduces DFS’s 𝑂 𝑁! time to 𝑂 2𝑁 × 𝑁2 .

• How can we implement Held-Karp?

Introducing the Held-Karp Algorithm



• Observe: If we can go from 0 to 1, and 

1 can go to 2, then there is a path 

involving all three vertices.

• Solve all smaller problems first.

• If it’s possible for all nodes to be visited, 

there’s a Hamiltonian Path!

Introducing the Held-Karp Algorithm – Cont.



• bitDP = Bit Dynamic Programming (ビット動的計画法)

• DP table where vertices go on one side and bitmasks go on the other.

• Bitmask requires storing all possible combinations of 𝑁 vertices in bits.

• Table is sized 𝑁 × 2𝑁.

• e.g. Graph with 4 vertices has 16 masks, from 0000 to 1111.

• At the final mask (e.g. 1111), if any value is set to 1, there is a Hamiltonian 

Path in the graph!

bitDP



• Make a bitDP table based on the graph:

bitDP – Example (Reading the table)



• Make a bitDP table based on the graph:

bitDP – Example (Reading the table)



• Consider Mask at 0xB (1011):

• Vertices Visited: 0, 1, 3

bitDP – Example (Reading the table)

• Is there a path between those three that:

• Ends at 0? Yes

• Ends at 1? No

• Ends at 3? Yes



• Make a bitDP table based on the graph:

bitDP – Example (Making the table)



• Each mask only containing 1 vertex is valid.

• These are the simplest “sub-problems”.

bitDP – Example (Making the table)



• Start going through all masks with 2 or more “1”s

• Let’s take a look at 0x3 (0011)… Vertices 0 and 1.

• Go through all rows in column and process.

bitDP – Example (Making the table)

• Column 3, row 0.

• Compute new mask: 0011 XOR 0001 = 0010

• Go to mask 0010 and see if any vertex there can go to 0.

• We can go from vertex 1 to vertex 0. Set the cell to 1.



• Start going through all masks with 2 or more “1”s

• Let’s take a look at 0x3 (0011)… Vertices 0 and 1.

• Go through all rows in column and process.

bitDP – Example (Making the table)

• Column 3, row 1.

• Compute new mask: 0011 XOR 0010 = 0001

• Go to mask 0001 and see if any vertex there can go to 1.

• We can go from vertex 0 to vertex 1. Set the cell to 1.



• Look at mask 1111… There is a Hamiltonian

Path that ends at vertices 0, 1, 2, and 3!

bitDP – Example (Making the table)



• RainbowGraph doesn’t care if we can determine if a Hamiltonian Path 

exists. It cares about how many there are.

• We can get how many Hamiltonian Paths end with a specific vertex, but we 

don’t know where such paths started.

• There is an easy fix... if we bump up the time complexity up a bit.

bitDP – A few problems



• Recall how we set all masks as the first step.

• We can force the grid to give us a starting vertex in a path... by having more 

tables.

bitDP – Modifications for Success



• Split up so each bitmask of 1 vertex gets its own table.

bitDP – Modifications for Success



• Once split, simply

run the same algorithm

again on all tables.

bitDP – Modifications for Success

dp[0] =

dp[1] =

dp[2] =

dp[3] =



• Once split, simply

run the same algorithm

again on all tables.

• Now we can determine if 

a Hamiltonian Path exists 

from a start and end

vertex.

bitDP – Modifications for Success

dp[0] =

dp[1] =

dp[2] =

dp[3] =



• Modify the algorithm to 

add to a cell, rather than 

set it to 1.

• We now get the total

number of Hamiltonian 

paths!

bitDP – Modifications for Success

dp[0] =

dp[1] =

dp[2] =

dp[3] =



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11

S
ec

o
n

d
s

Vertices in Graph

DFS

Held-Karp (via bitDP)

Held-Karp (via bitDP) Performance

Intel Core i7-7700
3.60 GHz



• 67/70 Test Cases complete.

• Still too slow!

bitDP on Topcoder (RainbowGraph)



bitDP – Can we go faster?



• Skip computations we know won’t work:

• Skip all “from” vertices not set to “1” in a mask.

• Skip all “to” vertices not set to “1” in a mask.

• Skip Column 0 as it is never used.

• If A can go to B, then B can go to A.

• All cells before a vertex in a row are guaranteed to be 0.

Speeding bitDP up



• If A can go to B, then B can go to A.

• Symmetry exists between DP table rows:

Speeding bitDP up – Part 1

dp[1] =

dp[2] =



• All cells before a vertex in a row are guaranteed to be 0.

Speeding bitDP up – Part 2



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10 11

S
ec

o
n

d
s

Vertices in Graph

DFS

Held-Karp (via bitDP)

Held-Karp (via bitDP v2)

Held-Karp (via bitDP v2) Performance

Intel Core i7-7700
3.60 GHz



• 70/70 Test Cases complete.

• Barely passes

bitDP v2 on Topcoder (RainbowGraph)



Discussion



• What is a Hamiltonian Path?

• What does bitDP stand for?

• What is the time complexity for finding a Hamiltonian Path via DFS? What 

about via the Held-Karp Algorithm?

Questions



• AtCoder Inc. “実践・最強最速のアルゴリズム勉強会第四回講義資料(ワークスアプリケーションズ& AtCoder).” LinkedIn 

SlideShare, 29 Mar. 2014, www.slideshare.net/chokudai/wap-atcoder4.

• “BitDP.” CCS千葉大学電子計算機研究会, 13 Mar. 2019, densanken.com/wiki/index.php?BitDP.

• “Held–Karp Algorithm.” Wikipedia, Wikimedia Foundation, 19 Feb. 2019, en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm.

• Jaimini, Vaibhav. “Hamiltonian Path Tutorials & Notes | Algorithms.” HackerEarth, 

www.hackerearth.com/ja/practice/algorithms/graphs/hamiltonian-path/tutorial/.

• Nguyen, Clara. “RainbowGraph: A Better Approach.” RainbowGraph: A Better Approach, 25 Jan. 2019, 

utk.claranguyen.me/guide.php?id=rainbowgraph_bitdp.

• Plank, James S. “SRM 720, D2, 1000-Pointer (RainbowGraph).” CS494 Lab 6, 3 Dec. 2018, 15:25, 

web.eecs.utk.edu/~plank/plank/classes/cs494/494/labs/Lab-6-RainbowGraph/.

• “Problem Statement for RainbowGraph.” TopCoder Statistics - Problem Statement, 

community.topcoder.com/stat?c=problem_statement&pm=14667.

References

http://www.slideshare.net/chokudai/wap-atcoder4
https://densanken.com/wiki/index.php?BitDP
https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm
http://www.hackerearth.com/ja/practice/algorithms/graphs/hamiltonian-path/tutorial/
http://utk.claranguyen.me/guide.php?id=rainbowgraph_bitdp
https://web.eecs.utk.edu/~plank/plank/classes/cs494/494/labs/Lab-6-RainbowGraph/
https://community.topcoder.com/stat?c=problem_statement&pm=14667


Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen

COSC 581 - 04/04/2019


