Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen COSC 581 - 04/04/2019

Questions

- What is a Hamiltonian Path?
- What does bitDP stand for?
- What is the time complexity for finding a Hamiltonian Path via DFS? What about via the Held-Karp Algorithm?

About Us

Clara Nguyen

- Master's Student on Course-Only track.
- Did undergrad at UTK
- Hobbies:
 - Video Games
 - Coding!
 - Music Production
- Born here! Look outside a window for a picture if you want.

Natalie Bogda

- Master's Student on thesis track.
 - Focus on Computer Vision
- Did undergrad at UTK
- Lived in Knoxville since 2011
- Hobbies:
 - Drawing
 - Hiking
 - 50cc 2 stroke scooters

Outline

- What are Hamiltonian Paths?
- The Problem RainbowGraph
- DFS The Naïve Approach
- Held-Karp The Clever Approach via bitDP
- bitDP Can we go even faster?
- Discussion

What are Hamiltonian Paths?

Hamiltonian Paths

- A path on a graph that visits each vertex exactly once.
- Finding these is an NP-complete problem.

The Problem - RainbowGraph

The Problem - RainbowGraph

- Topcoder Problem (SRM 720, D2, 1000-Pointer)
- Find number of Hamiltonian Paths in entire graph
 - Have to count such paths between every possible vertex.
 - via Naïve algorithms, this can *easily* hit O(N!) time.

• Each vertex has a color. If you visit one vertex of a specific color, you have to visit *all* vertices of the same color before going to another.

The Problem - RainbowGraph

• How many Hamiltonian Paths can you find?

DFS – The Naïve Approach

Depth First Search

```
function dfs(a) {
    visited[a] = true;
    if we visited all nodes in graph,
        return true;
    for b is 0 to n - 1
        if (visited[b] == false)
            dfs(b);
    // backtrack
    visited[a] = false;
    return false;
}
```

Depth First Search

- Very naïve way to approach this problem.
- DFS solves the problem in O(N!) time
 - Visit all permutations of vertices in the graph
 - Each iteration, it will traverse the permutation to see if adjacent vertices are connected
 - Therefore $O(N \times N!) = O(N!)$

Depth First Search Performance

DFS on Topcoder (RainbowGraph)

- **45**/70 Test Cases complete.
- Too slow!

		45/70		
		1000		
Success	Args	Expected	Received	Time
4	{{0, 0, 0, 1, 1, 1	, 2, 2, 0	0	0 ms
4	{{0, 0, 0, 1, 1, 1	, 2, 2, 24	24	0 ms
4	{{0, 3, 9, 8, 6, 4	4}, {0, 720	720	4 ms
4	{{0, 0, 0, 0, 3, 3	3, 3, 6, 64	64	0 ms
4	{{3, 1, 4, 1, 5, 9	9, 2, 6, 0	0	1 ms
4	{{2, 4, 3, 0, 2, 3	3, 3, 3, 983979105	983979105	9 ms
×	{{7, 3, 9, 2, 8, 0), 6, 8, 369922293	The code execution	on 0 ms
4	{{8, 2, 2, 2, 5, 3	3, 9, 9, 0	0	67 m
4	{{0, 6, 2, 1, 1, 0), 7, 0, 557724282	557724282	38 m
1	{{800321	8 6 580391918	580391918	49 m

Held-Karp – The Clever Approach via bitDP

DFS, can we improve it?

- Problems:
 - Multiple repeated function calls.
 - Have to check whether we visited a vertex or not.
 - Recursion.
 - There are properties of these graphs we aren't taking advantage of.
- We have to be clever.

DFS, can we improve it?

- Dynamic Programming? Memoization?
 - Many sub-problems and their results can be cached for later.
 - Reduces the problem down significantly.
- If A can go to B, than B can go to A.
- Use Adjacency Matrix for O(1) lookups. Use Adjacency List for iteration.
- Eliminate recursion as much as possible.
 - Can we get rid of recursion entirely?

Introducing the Held-Karp Algorithm

- Dynamic programming approach developed by Richard Bellman, Michael Held, and Richard Karp in 1962.
 - Solves "sub-problems" to speed up more expensive traversals.
 - Determining if a path exists from A to B becomes $O(N^2)$.
- Reduces DFS's O(N!) time to $O(2^N \times N^2)$.
- How can we implement Held-Karp?

Introducing the Held-Karp Algorithm – Cont.

- Observe: If we can go from 0 to 1, and 1 can go to 2, then there is a path involving all three vertices.
- Solve all smaller problems first.
- If it's possible for all nodes to be visited, there's a Hamiltonian Path!

bitDP

- ・ bitDP = **Bit D**ynamic **P**rogramming (ビット動的計画法)
- DP table where **vertices** go on one side and **bitmasks** go on the other.
 - Bitmask requires storing all possible combinations of N vertices in bits.
- Table is sized $N \times 2^N$.
 - e.g. Graph with 4 vertices has 16 masks, from 0000 to 1111.
- At the final mask (e.g. 1111), if **any** value is set to 1, there is a Hamiltonian Path in the graph!

Make a bitDP table based on the graph:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Make a bitDP table based on the graph:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1
2	0	0	0	0	1	1	1	1	0	0	0	0	1	0	1	1
3	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1

- Consider Mask at 0xB (1011):
 - Vertices Visited: 0, 1, 3

- Is there a path between those three that:
 - Ends at 0? Yes
 - Ends at 1? No
 - Ends at 3? Yes

Make a bitDP table based on the graph:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Each mask only containing 1 vertex is valid.
- These are the simplest "sub-problems".

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

- Start going through all masks with 2 or more "1"s
- Let's take a look at 0x3 (0011)... Vertices 0 and 1.
- Go through all rows in column and process.

- Column 3, row 0.
 - Compute new mask: 0011 XOR 0001 = 0010
 - Go to mask 0010 and see if any vertex there can go to 0.
 - We can go from vertex 1 to vertex 0. Set the cell to 1.

- Start going through all masks with 2 or more "1"s
- Let's take a look at 0x3 (0011)... Vertices 0 and 1.
- Go through all rows in column and process.

- Column 3, row 1.
 - Compute new mask: 0011 XOR 0010 = 0001
 - Go to mask 0001 and see if any vertex there can go to 1.
 - We can go from vertex 0 to vertex 1. Set the cell to 1.

• Look at mask 1111... There is a Hamiltonian Path that ends at vertices 0, 1, 2, and 3!

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1
2	0	0	0	0	1	1	1	1	0	0	0	0	1	0	1	1
3	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1

bitDP – A few problems

 RainbowGraph doesn't care if we can determine if a Hamiltonian Path exists. It cares about how many there are.

• We can get how many Hamiltonian Paths **end** with a specific vertex, but we don't know where such paths **started**.

• There is an easy fix... if we bump up the time complexity up a bit.

- Recall how we set all masks as the first step.
- We can force the grid to give us a starting vertex in a path... by having more tables.

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

• Split up so each bitmask of 1 vertex gets its own table.

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

d

Once split, simply
 run the same algorithm
 again on **all** tables.

	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0		1														
p[0] =	1																
	2																
	3																
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0																
p[1] =	1			1													
	2																
	3																
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	Vertex/Mask 0	0 0	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	A 0	B 0	C 0	D 0	E 0	F
p[2] =	Vertex/Mask 0 1	0 0 0	1 0 0	2 0 0	3 0	4 0	5 0 0	6 0 0	7 0 0	8 0 0	9 0 0	A 0 0	B 0	C 0	D 0	E 0 0	F 0 0
p[2] =	Vertex/Mask 0 1 2	0 0 0	1 0 0	2 0 0	3 0 0	4 0 0 1	5 0 0	6 0 0	7 0 0 0	8 0 0 0	9 0 0	A 0 0 0	B 0 0	C 0 0	D 0 0	E 0 0	F 0 0
p[2] =	Vertex/Mask 0 1 2 3	0 0 0 0	1 0 0 0	2 0 0 0	3 0 0 0	4 0 0 1 0	5 0 0 0	6 0 0 0	7 0 0 0	8 0 0 0	9 0 0 0	A 0 0 0	B 0 0 0	C 0 0 0	D 0 0 0	E 0 0 0	F 0 0 0
p[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask	0 0 0 0 0	1 0 0 0 0	2 0 0 0 0 2	3 0 0 0 0 3	4 0 0 1 0 4	5 0 0 0 0 5	6 0 0 0 0	7 0 0 0 0 7	8 0 0 0 0 8	9 0 0 0 0 9	A 0 0 0 0 0	B 0 0 0 0 8	C 0 0 0 0 C	D 0 0 0 0 D	E 0 0 0 0 E	F 0 0 0 0 F
p[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0	0 0 0 0 0	1 0 0 0 1	2 0 0 0 0 2 0	3 0 0 0 0 3 0	4 0 1 0 4	5 0 0 0 5 0	6 0 0 0 6 0	7 0 0 0 7 0	8 0 0 0 0 8 0	9 0 0 0 9 0	A 0 0 0 0 4	B 0 0 0 8 0	C 0 0 0 0 C	D 0 0 0 0 0 D	E 0 0 0 0 E 0	F 0 0 0 0 F 0
p[2] = p[3] <u>=</u>	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1	0 0 0 0 0 0	1 0 0 0 1 0	2 0 0 0 2 0 0	3 0 0 0 3 0 0	4 0 1 0 4 0	5 0 0 0 5 0	6 0 0 0 6 0	7 0 0 0 7 0 0	8 0 0 0 8 8 0	9 0 0 0 9 0	A 0 0 0 0 A 0 0	B 0 0 0 8 0 8	C 0 0 0 0 C 0 0	D 0 0 0 0 0 0 0	E 0 0 0 0 E 0 0	F 0 0 0 F 0 0
p[2] = p[3] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1 2	0 0 0 0 0 0 0	1 0 0 0 1 0 0 0	2 0 0 0 2 0 0 0	3 0 0 0 3 0 0 0	4 0 1 0 4 0 0 0	5 0 0 0 5 0 0 0	6 0 0 0 6 0 0 0	7 0 0 0 7 0 0 0	8 0 0 0 8 0 0 0	9 0 0 0 9 0 0 0	A 0 0 0 0 A 0 0 0	B 0 0 0 8 0 0 0	C 0 0 0 C 0 0 0	D 0 0 0 0 D 0 0	E 0 0 0 E 0 0	F 0 0 0 F 0 0 0

• Once split, simply run the same algorithm again on **all** tables.

• Now we can determine if a Hamiltonian Path exists from a start and end vertex.

	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0		1														
dp[0] =	1				1				1								1
	2						1		1								1
	3												1		1		1
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0				1				1								1
dp[1] =	1			1													
	2							1	1							1	
	3											1				1	1
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	Vertex/Mask 0	0 0	1 0	2 0	3 0	4 0	5 1	6 0	7 1	8 0	9 0	A 0	B 0	C 0	D 0	E 0	F 1
dp[2] =	Vertex/Mask 0 1	0 0 0	1 0 0	2 0 0	3 0	4 0	5 1 0	6 0 1	7 1 1	8 0 0	9 0 0	A 0 0	B 0	C 0	D 0	E 0 1	F 1
dp[2] =	Vertex/Mask 0 1 2	0 0 0	1 0 0	2 0 0	3 0 0	4 0 0 1	5 1 0 0	6 0 1 0	7 1 1 0	8 0 0	9 0 0	A 0 0	B 0 0	C 0 0	D 0 0 0	E 0 1 0	F 1 0
dp[2] =	Vertex/Mask 0 1 2 3	0 0 0 0	1 0 0 0	2 0 0 0	3 0 0 0 0	4 0 0 1 0	5 1 0 0	6 0 1 0 0	7 1 1 0 0	8 0 0 0	9 0 0 0	A 0 0 0	B 0 0 0	C 0 0 0 1	D 0 0 0	E 0 1 0 1	F 1 0 0
dp[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask	0 0 0 0 0	1 0 0 0 0	2 0 0 0 0 2	3 0 0 0 0 3	4 0 1 0 4	5 1 0 0 0 5	6 0 1 0 0 6	7 1 1 0 0 7	8 0 0 0 0 8	9 0 0 0 0 9	A 0 0 0 0 4	B 0 0 0 0 8	C 0 0 1 C	D 0 0 0 0 D	E 0 1 0 1 E	F 1 0 1 1 F
dp[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0	0 0 0 0 0 0	1 0 0 0 1	2 0 0 0 0 2 0	3 0 0 0 0 3 0	4 0 1 0 4	5 1 0 0 5 0	6 0 1 0 0 6	7 1 0 0 7	8 0 0 0 0 8 8	9 0 0 0 9 0	A 0 0 0 0 A 0	B 0 0 0 8 1	C 0 0 1 C 0	D 0 0 0 0 0 D	E 0 1 0 1 E 0	F 1 0 1 1 F 1
dp[2] = dp[3] <u>=</u>	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1	0 0 0 0 0 0	1 0 0 0 1 0	2 0 0 0 2 0	3 0 0 0 3 0 0	4 0 1 0 4 0	5 1 0 0 5 0	6 0 1 0 6 0	7 1 0 0 7 0	8 0 0 0 0 8 8 0	9 0 0 0 9 0	A 0 0 0 0 A 0 1	B 0 0 0 8 1	C 0 0 1 C 0 0	D 0 0 0 0 0 1	E 0 1 0 1 E 0 1	F 1 0 1 F 1 1
dp[2] = dp[3] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1 2	0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0	2 0 0 0 2 0 0 0	3 0 0 0 3 0 0 0	4 0 1 0 4 0 0 0	5 0 0 5 0 0	6 0 1 0 6 0 0 0	7 1 0 0 7 0 0 0	8 0 0 0 8 0 0 0	9 0 0 0 9 0 0 0	A 0 0 0 A 0 1	B 0 0 0 B 1 0 0	C 0 1 C 0 0 0 1	D 0 0 0 D 1 0 0	E 0 1 0 1 E 0 1 1	F 1 0 1 F 1 1 1

• Modify the algorithm to add to a cell, rather than set it to 1.

• We now get the **total** number of Hamiltonian paths!

	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0		1														
dp[0] =	1				1				1								1
	2						1		1								1
	3												1		1		2
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0				1				1								1
dp[1] =	1			1													
	2							1	1							1	
	3											1				1	1
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	Vertex/Mask 0	0 0	1 0	2 0	3 0	4 0	5 1	6 0	7 1	8 0	9 0	A 0	В 0	C 0	D 0	E 0	F 1
dp[2] =	Vertex/Mask 0 1	0 0	1 0 0	2 0 0	3 0 0	4 0 0	5 1 0	6 0 1	7 1 1	8 0 0	9 0 0	A 0 0	B 0 0	C 0 0	D 0	E 0 1	F 1 0
dp[2] =	Vertex/Mask 0 1 2	0 0 0	1 0 0	2 0 0	3 0 0	4 0 0 1	5 1 0 0	6 0 1 0	7 1 1 0	8 0 0	9 0 0	A 0 0 0	B 0 0	C 0 0	D 0 0 0	E 0 1 0	F 1 0
dp[2] =	Vertex/Mask 0 1 2 3	0 0 0 0	1 0 0 0	2 0 0 0	3 0 0 0	4 0 0 1 0	5 1 0 0	6 0 1 0	7 1 1 0 0	8 0 0 0	9 0 0 0	A 0 0 0	B 0 0 0	C 0 0 0 1	D 0 0 0 0 0 0	E 0 1 0 1	F 1 0 0
dp[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask	0 0 0 0	1 0 0 0 0	2 0 0 0 0 2	3 0 0 0 0 3	4 0 1 0 4	5 1 0 0 5	6 0 1 0 0	7 1 1 0 0 7	8 0 0 0 0 8	9 0 0 0 0 9	A 0 0 0 0 A	B 0 0 0 0 B	C 0 0 1 C	D 0 0 0 0 D	E 0 1 0 1 E	F 1 0 1 F
dp[2] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0	0 0 0 0 0 0	1 0 0 0 1	2 0 0 0 0 2 0	3 0 0 0 0 3 0	4 0 1 0 4	5 1 0 0 5 0	6 0 1 0 0 6 0	7 1 1 0 0 7 0	8 0 0 0 0 8 8	9 0 0 0 9 0	A 0 0 0 0 4	B 0 0 0 8 1	C 0 0 1 C 0	D 0 0 0 0 D 1	E 0 1 0 1 E 0	F 1 0 1 F 2
dp[2] = dp[3] <u>=</u>	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1	0 0 0 0 0 0	1 0 0 0 1 0 0	2 0 0 0 0 2 0 0	3 0 0 0 0 3 0 0	4 0 1 0 4 0	5 1 0 0 5 0 0	6 0 1 0 0 6 0 0	7 1 0 0 7 0 0	8 0 0 0 8 8 0	9 0 0 0 9 0 0	A 0 0 0 0 4 0 1	B 0 0 0 8 B 1	C 0 0 1 C 0 0	D 0 0 0 0 0 0 1	E 0 1 0 1 E 0 1	F 1 0 1 F 2 1
dp[2] = dp[3] =	Vertex/Mask 0 1 2 3 Vertex/Mask 0 1 2	0 0 0 0 0 0 0	1 0 0 0 1 0 0 0	2 0 0 0 2 0 0 0	3 0 0 0 3 0 0 0	4 0 1 0 4 0 0 0	5 1 0 0 5 0 0 0	6 0 1 0 6 0 0 0	7 1 0 0 7 0 0 0	8 0 0 0 8 0 0 0	9 0 0 0 9 0 0 0	A 0 0 0 A 0 1	B 0 0 0 8 1 0 0	C 0 1 C 0 0 1	D 0 0 0 0 0 1 0 0	E 0 1 0 1 E 0 1 1	F 1 0 1 F 2 1 1

Held-Karp (via bitDP) Performance

bitDP on Topcoder (RainbowGraph)

- 67/70 Test Cases complete.
- Still too slow!

	67/70		
	1000		
Success	Args Expected	Received	Time
4	{{3, 6, 9, 7, 4, 5, 3, 0, 470178489	470178489	227 n
4	{{9, 9, 4, 2, 4, 6, 3, 6, 916349465	916349465	214 n
4	{{2, 4, 9, 7, 8, 0, 7, 0, 73583251	73583251	1.98s
4	{{2, 2, 7, 7, 3, 4, 8, 6, 632965150	632965150	197 n
4	{{4, 2, 1, 4, 4, 4, 0, 8, 176759801	176759801	1.726
4	{{1, 7, 2, 8, 6, 1, 7, 3, 524928982	524928982	230 n
4	{{1, 8, 1, 5, 3, 8, 3, 0, 924607666	924607666	306 n
4	{{9, 0, 8, 7, 0, 6, 1, 7, 622467578	622467578	199 n
1	{{9, 1, 9, 3, 3, 4, 2, 6, 997543496	997543496	227 n
4	<u> </u>	770101101	000

bitDP – Can we go faster?

Speeding bitDP up

- Skip computations we know won't work:
 - Skip all "from" vertices not set to "1" in a mask.
 - Skip all "to" vertices not set to "1" in a mask.
 - Skip Column 0 as it is never used.
- If A can go to B, then B can go to A.
- All cells before a vertex in a row are guaranteed to be 0.

Speeding bitDP up – Part 1

- If A can go to B, then B can go to A.
- Symmetry exists between DP table rows:

	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1
dp[1] =	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2							1	1							1	
	3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
	Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ε	F
	0	0	0	0	0	0	1		1	0	0	0	0	0	0	0	1
dp[2] =	1							1	1							1	
	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

Speeding bitDP up – Part 2

• All cells before a vertex in a row are guaranteed to be 0.

Vertex/Mask	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0		1	0	1	0	1	0	1	0	0	0	1	0	1	0	1
1			1	1	0	0	1	1	0	0	1	0	0	0	1	1
2					1	1	1	1	0	0	0	0	1	0	1	1
3									1	0	1	1	1	1	1	1

Held-Karp (via bitDP v2) Performance

bitDP v2 on Topcoder (RainbowGraph)

- 70/70 Test Cases complete.
- Barely passes

	70	70		
	10	00		
	10	00		
Success	Args E	xpected	Received	Time
4	{{0, 0, 0, 1, 1, 1, 2, 2, 0		0	0 ms
4	{{0, 0, 0, 1, 1, 1, 2, 2, 2	4	24	0 ms
4	{{0, 3, 9, 8, 6, 4}, {0, 7	20	720	3 ms
4	{{0, 0, 0, 0, 3, 3, 3, 6, 6	4	64	0 ms
4	{{3, 1, 4, 1, 5, 9, 2, 6, 0		0	1 ms
4	{{2, 4, 3, 0, 2, 3, 3, 3, 9	83979105	983979105	14 m:
4	{{7, 3, 9, 2, 8, 0, 6, 8, 3	69922293	369922293	218 n
4	{{8, 2, 2, 2, 5, 3, 9, 9, 0		0	61 m:
4	{{0, 6, 2, 1, 1, 0, 7, 0, 5	57724282	557724282	191 n
1	<u>#800321865</u>	80391918	580391918	46 m

Discussion

Questions

- What is a Hamiltonian Path?
- What does bitDP stand for?
- What is the time complexity for finding a Hamiltonian Path via DFS? What about via the Held-Karp Algorithm?

References

- AtCoder Inc. "実践・最強最速のアルゴリズム勉強会 第四回講義資料(ワークスアプリケーションズ & AtCoder)." LinkedIn SlideShare, 29 Mar. 2014, www.slideshare.net/chokudai/wap-atcoder4.
- "BitDP." CCS 千葉大学電子計算機研究会, 13 Mar. 2019, densanken.com/wiki/index.php?BitDP.
- "Held-Karp Algorithm." *Wikipedia*, Wikimedia Foundation, 19 Feb. 2019, <u>en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm</u>.
- Jaimini, Vaibhav. "Hamiltonian Path Tutorials & Notes | Algorithms." HackerEarth, www.hackerearth.com/ja/practice/algorithms/graphs/hamiltonian-path/tutorial/
- Nguyen, Clara. "RainbowGraph: A Better Approach." RainbowGraph: A Better Approach, 25 Jan. 2019, <u>utk.claranguyen.me/guide.php?id=rainbowgraph_bitdp</u>.
- Plank, James S. "SRM 720, D2, 1000-Pointer (RainbowGraph)." CS494 Lab 6, 3 Dec. 2018, 15:25, web.eecs.utk.edu/~plank/plank/classes/cs494/494/labs/Lab-6-RainbowGraph/.
- "Problem Statement for RainbowGraph." TopCoder Statistics Problem Statement,

<u>community.topcoder.com/stat?c=problem_statement&pm=14667</u>.

Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen COSC 581 - 04/04/2019