Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen
COSC 581 - 04/04/2019

Questions

* Whatis a Hamiltonian Path?
 What does bitDP stand for?

» What is the time complexity for finding a Hamiltonian Path via DFS? What
about via the Held-Karp Algorithm?

About Us

Clara Nguyen

Master’s Student on Course-Only track.
Did undergrad at UTK

Hobbies:
* Video Games
* Coding!
 Music Production
Born here! Look outside a window for a

picture if you want.

Natalie Bogda

 Master’s Student on thesis track.

e Focus on Computer Vision

Did undergrad at UTK

Lived in Knoxville since 2011

Hobbies:
* Drawing
* Hiking

e 50cc 2 stroke scooters

Outline

 What are Hamiltonian Paths?

* The Problem - RainbowGraph

DFS - The Naive Approach

Held-Karp - The Clever Approach via bitDP

bitDP - Can we go even faster?

Discussion

What are Hamiltonian Paths?

Hamiltonian Paths

* A path on a graph that visits each vertex exactly once.

* Finding these is an NP-complete problem.

The Problem - RainbowGraph

The Problem - RainbowGraph

* Topcoder Problem (SRM 720, D2, 1000-Pointer)

* Find number of Hamiltonian Paths in entire graph
* Have to count such paths between every possible vertex.

* via Naive algorithms, this can easily hit O(N!) time.

* Each vertex has a color. If you visit one vertex of a specific color, you have to

visit all vertices of the same color before going to another.

The Problem - RainbowGraph

 How many Hamiltonian Paths can you find?

1

12 11

10

DFS - The Nailve Approach

Depth First Search

function dfs(a) {
visited[a] = true;

if we visited all nodes in graph,
return true;

for b 1s @ ton - 1
if (visited[b] == false)
dfs(b);

// backtrack
visited[a] = false;

return false;

Depth First Search

 Very naive way to approach this problem.

* DFS solves the problem in O(N!) time
* Visit all permutations of vertices in the graph

 Each iteration, it will traverse the permutation to see if adjacent vertices

are connected

* Therefore O(N x N!) = O(N!)

Depth First Search Performance

Seconds

4

3.5

3

2.5

2

1.5

1

0.5

4

5 6 7

Vertices in Graph

8

9

10

11

Intel Corei7-7700
3.60 GHz

& DFS

DFS on Topcoder (RainbowGraph)

* /70 Test Cases complete.

* Too slow!

4570
Success Args Expected Received Time
- #0,0,01,1,1, 2 2.0 0 0 ms
+ H0,0,01,1,1, 2 2,...24 24 0 ms
-+ #0,3,9 8 6 4% {0, .. 720 720 4 ms
. #0,0,00 3 3, 3,6,.. 64 64 0 ms
+ #3,1,41,59 26,..0 0 1ms
-+ #2430 2 3 3 3,..983879105 933979105 8 ms
EX #7,3,9 2 8,06 8,.. 369922293 The code execution ... 0 ms
+ f8,2 2253949..10 0 67 m:
-+ #0062 1,10 7, 0. 557724282 hETT24282 38 m:
i’y g2 N0 N398R RENACIOIR RAN301018 AQ me

Held-Karp — The Clever Approach via bitDP

DFS, can we improve it?

* Problems:
* Multiple repeated function calls.
* Have to check whether we visited a vertex or not.
* Recursion.

* There are properties of these graphs we aren’t taking advantage of.

 We have to be clever.

DFS, can we improve it?

Dynamic Programming? Memoization?
* Many sub-problems and their results can be cached for later.

* Reduces the problem down significantly.

If A can go to B, than B can go to A.

Use Adjacency Matrix for 0(1) lookups. Use Adjacency List for iteration.

Eliminate recursion as much as possible.

» Can we get rid of recursion entirely?

Introducing the Held-Karp Algorithm

* Dynamic programming approach developed by Richard Bellman, Michael

Held, and Richard Karp in 1962.
* Solves “sub-problems” to speed up more expensive traversals.

* Determining if a path exists from A to B becomes O(N?2).
» Reduces DFS’s O(N!) timeto 0(2Y x N?).

* How can we implement Held-Karp?

Introducing the Held-Karp Algorithm - Cont.

* Observe: If we can go from 0to 1, and
1 can go to 2, then there is a path

involving all three vertices.
 Solve all smaller problems first.

* Ifit’s possible for all nodes to be visited, %

there’s a Hamiltonian Path!

bitDP

* bitDP = Bit Dynamic Programming (E v B E1 &%)
* DP table where vertices go on one side and bitmasks go on the other.

* Bitmask requires storing all possible combinations of N vertices in bits.

e Tableissized N x 2V,

* e.g. Graph with 4 vertices has 16 masks, from 0000 to 1111.

* At thefinal mask (e.g. 1111), if any value is set to 1, there is a Hamiltonian

Path in the graph!

bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

0

Vertex/Mask

bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

Vertex/Mask 0 1 2 3 4 5 6 7
0 1 1 1 1

1

1

1
2 1 1 1
3

L T U

bitDP - Example (Reading the table)

* Consider Mask at 0xB (1011): 1
 Vertices Visited: 0, 1, 3 0
9 A B C D * |sthere a path between those three that:
1 1 Endsat0? Yes
1
 Endsat1l1?

1 1 1 1 e Ends at3? Yes

bitDP - Example (Making the table)

* Make a bitDP table based on the graph:

0

Vertex/Mask

bitDP - Example (Making the table)

» Each mask only containing 1 vertex is valid.

* These are the simplest “sub-problems”.

Vertex/Mask 0 1 2 3 4 5 6 7 8 9
0 1

1
2 1
3

bitDP - Example (Making the table)

* Start going through all masks with 2 or more “1”s 1
* Let’s take a look at 0x3 (0011)... Vertices 0 and 1. .

* Go through all rows in column and process.

e Column 3, row 0.
e Compute new mask: 0011 XOR 0001 =0010
1 * Go to mask 0010 and see if any vertex there can go to 0.

* We can go from vertex 1 to vertex 0. Set the cell to 1.

bitDP - Example (Making the table)

* Start going through all masks with 2 or more “1”s 1
* Let’s take a look at 0x3 (0011)... Vertices 0 and 1. .

* Go through all rows in column and process.

e Column 3, row 1.
e Compute new mask: 0011 XOR 0010 =0001
il B * Go to mask 0001 and see if any vertex there can go to 1.

* We can go from vertex 0 to vertex 1. Set the cell to 1.

bitDP - Example (Making the table)

* Lookatmask 1111... Thereis a Hamiltonian

Path that ends at vertices 0, 1, 2, and 3!

Vertex/Mask 0 1 2 3 4 5 6 7
0 1 1 1 1

1

1

1
2 1 1 1
3

L T U

bitDP - A few problems

* RainbowGraph doesn’t care if we can determine if a Hamiltonian Path

exists. It cares about how many there are.

* We can get how many Hamiltonian Paths end with a specific vertex, but we

don’t know where such paths started.

* There is an easy fix... if we bump up the time complexity up a bit.

bitDP — Modifications for Success

» Recall how we set all masks as the first step.

» We can force the grid to give us a starting vertex in a path... by having more

tables.

Vertex/Mask 0 1 p 3 4 5 6 7 8 9 A B C D = F
0 1

1
2 1
3

bitDP — Modifications for Success

 Split up so each bitmask of 1 vertex gets its own table.

Vertex/Mask 0 1 2 3 4 5 6 7 8 9 A B C D
0 1

1
2 1
3

bitDP — Modifications for Success

Vertex/Mask 0] 1 2

i 0 1
* Once split, simply e -
2
run the same algorithm 3
Vertex/Mask 0] 1 2
again on all tables. 0
dp[l]= 1
2
3
Vertex/Mask 0] 1 2
0
dpl2]=
2
3
Vertex/Mask 0] 1 2
0
dp[3] =

1
2
3

bitDP — Modifications for Success

* Once split, simply
run the same algorithm

again on all tables.

* Now we can determine if
a Hamiltonian Path exists
from a start and end

vertex.

Vertex/Mask

Vertex/Mask
0

1
2
3

0

1
1

2

R =B = M

bitDP — Modifications for Success

* Modify the algorithm to
add to a cell, rather than

setitto 1.

* We now get the total
number of Hamiltonian

paths!

Vertex/Mask

Vertex/Mask
0

1
2
3

0

2

= = N M e

Held-Karp (via bitDP) Performance

Seconds

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

5 6 7

Vertices in Graph

10

11

Intel Corei7-7700
3.60 GHz

——DFS
Held-Karp (via bitDP)

bitDP on Topcoder (RainbowGraph)

* /70 Test Cases complete.

 Still too slow!

SUCCess

AR A A A 4 44

Mo
3,6,97,4 530
19,94 2 46 36
{2,4,97,807,0
2,277,348 6
4,2,1,44408
i1,7,2861,7,3
£1,8,1,5 3,8, 3,0
{9, 0,87,061,7
191,93 3 4 26

T T

6770

Expected

. 470178489
. 916349465
. 13583251

. 632965150
- 17e7e9801
. 524928982
. 924607666
. 622467578
. 997543496

——rnoa . oaa

HeceWap..

4701784539
916349465
735832531

632965150
176739801
524928952
924607666
622467578
997543496

——r i oa e a

L
227 n
2141
1.98s
197 n
1726
230 n
306 n
199 n
227 n

.

bitDP - Can we go faster?

Speeding bitDP up

e Skip computations we know won’t work:
« Skip all “from” vertices not set to “1” in a mask.
 Skip all “to” vertices not set to “1” in a mask.

» Skip Column 0 as it is never used.
* If Acan go to B, then B can go to A,

* All cells before a vertex in a row are guaranteed to be 0.

Speeding bitDP up - Part 1

* If Acan go to B, then B can go to A,

e Symmetry exists between DP table rows:

Vertex/Mask 0 1 2 3 4 5

0 1
dp[l] = 1 1
2
3
VEI DU ENS 0 1 2 3 4 5
0 1
dp[2] =

1
2 1
3

Speeding bitDP up - Part 2

* All cells before a vertex in a row are guaranteed to be 0.

Vertex/Mask 0 1 p 3 4 5 6 7 8 9 A
0 1 1 1 1
1 1 1 1 1 1
2 1 1 1 1
3 1 1

T = SR S

Held-Karp (via bitDP v2) Performance

0.07

0.06

o Intel Core i7-7700

' 3.60 GHz

S
S 0.04
o
O
n

0.03

0.02

——DEFS
0.01 Held-Karp (via bitDP)
/ ——Held-Karp (via bitDP v2)
0 —
0] 1 2 3 4 5 6 7 8 9 10 11

Vertices in Graph

bitDP v2 on Topcoder (RainbowGraph)

e 70/70 Test Cases complete.

» Barely passes

SUCCess

R L

Args
o,
1o,

{o

Ho,
3,
{2,
i,
s,
Ho,

Ina

= R e R i L - = =

S RMMDWREDDOoD O
R N I (e =R - QR

)

W=k N 00 kN L2

& &
= -

= R VS = R UV v s R WY

el N I 1= I e R AV N T % R L S

=]
IR

o (g g FR = E =

oo

1000

Expected

.. 0

.. 24

. 120

... b4

.. 0

.. 983979105
... 369922293
.. 0

.. 0BT 724282

RANIG1G1R

Received
0

24

720

64

0
933979105
369922293
0

557724282
RAN201018

Time
0 ms
0ms
Ams
0ms
1ms
14 me
218 n
61 m:

191 n
AR m:

Discussion

Questions

* Whatis a Hamiltonian Path?
 What does bitDP stand for?

» What is the time complexity for finding a Hamiltonian Path via DFS? What
about via the Held-Karp Algorithm?

References

AtCoder Inc. “EE - &BREERD 7T) X L%EE BURIFERER(T — 27 X7 7V —3 3 > X &AtCoder).” LinkedIn
SlideShare, 29 Mar. 2014,

“BitDP.” CCS F /A FE FIEHM TR, 13 Mar. 2019,
“Held-Karp Algorithm.” Wikipedia, Wikimedia Foundation, 19 Feb. 2019,

Jaimini, Vaibhav. “Hamiltonian Path Tutorials & Notes | Algorithms.” HackerEarth,

Nguyen, Clara. “RainbowGraph: A Better Approach.” RainbowGraph: A Better Approach, 25 Jan. 2019,

Plank, James S. “SRM 720, D2, 1000-Pointer (RainbowGraph).” CS494 Lab 6, 3 Dec. 2018, 15:25,

“Problem Statement for RainbowGraph.” TopCoder Statistics - Problem Statement,

http://www.slideshare.net/chokudai/wap-atcoder4
https://densanken.com/wiki/index.php?BitDP
https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm
http://www.hackerearth.com/ja/practice/algorithms/graphs/hamiltonian-path/tutorial/
http://utk.claranguyen.me/guide.php?id=rainbowgraph_bitdp
https://web.eecs.utk.edu/~plank/plank/classes/cs494/494/labs/Lab-6-RainbowGraph/
https://community.topcoder.com/stat?c=problem_statement&pm=14667

Hamiltonian Paths & bitDP

Natalie Bogda & Clara Nguyen
COSC 581 - 04/04/2019

