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Questions

* Whatis a Hamiltonian Path?
 What does bitDP stand for?

» What is the time complexity for finding a Hamiltonian Path via DFS? What
about via the Held-Karp Algorithm?
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What are Hamiltonian Paths?



Hamiltonian Paths

* A path on a graph that visits each vertex exactly once.

* Finding these is an NP-complete problem.



The Problem - RainbowGraph



The Problem - RainbowGraph

* Topcoder Problem (SRM 720, D2, 1000-Pointer)

* Find number of Hamiltonian Paths in entire graph
* Have to count such paths between every possible vertex.

* via Naive algorithms, this can easily hit O(N!) time.

* Each vertex has a color. If you visit one vertex of a specific color, you have to

visit all vertices of the same color before going to another.



The Problem - RainbowGraph

 How many Hamiltonian Paths can you find?
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DFS - The Nailve Approach



Depth First Search

function dfs(a) {
visited[a] = true;

if we visited all nodes in graph,
return true;

for b 1s @ ton - 1
if (visited[b] == false)
dfs(b);

// backtrack
visited[a] = false;

return false;



Depth First Search

 Very naive way to approach this problem.

* DFS solves the problem in O(N!) time
* Visit all permutations of vertices in the graph

 Each iteration, it will traverse the permutation to see if adjacent vertices

are connected

* Therefore O(N x N!) = O(N!)



Depth First Search Performance
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DFS on Topcoder (RainbowGraph)

* /70 Test Cases complete.

* Too slow!
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Held-Karp — The Clever Approach via bitDP



DFS, can we improve it?

* Problems:
* Multiple repeated function calls.
* Have to check whether we visited a vertex or not.
* Recursion.

* There are properties of these graphs we aren’t taking advantage of.

 We have to be clever.



DFS, can we improve it?

Dynamic Programming? Memoization?
* Many sub-problems and their results can be cached for later.

* Reduces the problem down significantly.

If A can go to B, than B can go to A.

Use Adjacency Matrix for 0(1) lookups. Use Adjacency List for iteration.

Eliminate recursion as much as possible.

» Can we get rid of recursion entirely?



Introducing the Held-Karp Algorithm

* Dynamic programming approach developed by Richard Bellman, Michael

Held, and Richard Karp in 1962.
* Solves “sub-problems” to speed up more expensive traversals.

* Determining if a path exists from A to B becomes O(N?2).
» Reduces DFS’s O(N!) timeto 0(2Y x N?).

* How can we implement Held-Karp?



Introducing the Held-Karp Algorithm - Cont.

* Observe: If we can go from 0to 1, and
1 can go to 2, then there is a path

involving all three vertices.
 Solve all smaller problems first.

* Ifit’s possible for all nodes to be visited, %

there’s a Hamiltonian Path!



bitDP

* bitDP = Bit Dynamic Programming (E v B E1 &%)
* DP table where vertices go on one side and bitmasks go on the other.

* Bitmask requires storing all possible combinations of N vertices in bits.

e Tableissized N x 2V,

* e.g. Graph with 4 vertices has 16 masks, from 0000 to 1111.

* At thefinal mask (e.g. 1111), if any value is set to 1, there is a Hamiltonian

Path in the graph!



bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

0

Vertex/Mask



bitDP - Example (Reading the table)

* Make a bitDP table based on the graph:

Vertex/Mask 0 1 2 3 4 5 6 7
0 1 1 1 1

1

1

1
2 1 1 1
3

L T U



bitDP - Example (Reading the table)

* Consider Mask at 0xB (1011): 1
 Vertices Visited: 0, 1, 3 0
9 A B C D * |sthere a path between those three that:
1 1  Endsat0? Yes
1
 Endsat1l1?

1 1 1 1 e Ends at3? Yes



bitDP - Example (Making the table)

* Make a bitDP table based on the graph:

0

Vertex/Mask



bitDP - Example (Making the table)

» Each mask only containing 1 vertex is valid.

* These are the simplest “sub-problems”.

Vertex/Mask 0 1 2 3 4 5 6 7 8 9
0 1

1
2 1
3



bitDP - Example (Making the table)

* Start going through all masks with 2 or more “1”s 1
* Let’s take a look at 0x3 (0011)... Vertices 0 and 1. .

* Go through all rows in column and process.

e Column 3, row 0.
e Compute new mask: 0011 XOR 0001 =0010
1 * Go to mask 0010 and see if any vertex there can go to 0.

* We can go from vertex 1 to vertex 0. Set the cell to 1.



bitDP - Example (Making the table)

* Start going through all masks with 2 or more “1”s 1
* Let’s take a look at 0x3 (0011)... Vertices 0 and 1. .

* Go through all rows in column and process.

e Column 3, row 1.
e Compute new mask: 0011 XOR 0010 =0001
il B * Go to mask 0001 and see if any vertex there can go to 1.

* We can go from vertex 0 to vertex 1. Set the cell to 1.



bitDP - Example (Making the table)

* Lookatmask 1111... Thereis a Hamiltonian

Path that ends at vertices 0, 1, 2, and 3!

Vertex/Mask 0 1 2 3 4 5 6 7
0 1 1 1 1

1

1

1
2 1 1 1
3
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bitDP - A few problems

* RainbowGraph doesn’t care if we can determine if a Hamiltonian Path

exists. It cares about how many there are.

* We can get how many Hamiltonian Paths end with a specific vertex, but we

don’t know where such paths started.

* There is an easy fix... if we bump up the time complexity up a bit.



bitDP — Modifications for Success

» Recall how we set all masks as the first step.

» We can force the grid to give us a starting vertex in a path... by having more

tables.

Vertex/Mask 0 1 p 3 4 5 6 7 8 9 A B C D = F
0 1

1
2 1
3



bitDP — Modifications for Success

 Split up so each bitmask of 1 vertex gets its own table.

Vertex/Mask 0 1 2 3 4 5 6 7 8 9 A B C D
0 1

1
2 1
3



bitDP — Modifications for Success

Vertex/Mask 0] 1 2

i 0 1
* Once split, simply e -
2
run the same algorithm 3
Vertex/Mask 0] 1 2
again on all tables. 0
dp[l]= 1
2
3
Vertex/Mask 0] 1 2
0
dpl2]=
2
3
Vertex/Mask 0] 1 2
0
dp[3] =

1
2
3



bitDP — Modifications for Success

* Once split, simply
run the same algorithm

again on all tables.

* Now we can determine if
a Hamiltonian Path exists
from a start and end

vertex.

Vertex/Mask

Vertex/Mask
0

1
2
3

0

1
1

2

R =B = M



bitDP — Modifications for Success

* Modify the algorithm to
add to a cell, rather than

setitto 1.

* We now get the total
number of Hamiltonian

paths!

Vertex/Mask

Vertex/Mask
0

1
2
3

0

2

= = N M e



Held-Karp (via bitDP) Performance
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bitDP on Topcoder (RainbowGraph)

* /70 Test Cases complete.

 Still too slow!
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bitDP - Can we go faster?



Speeding bitDP up

e Skip computations we know won’t work:
« Skip all “from” vertices not set to “1” in a mask.
 Skip all “to” vertices not set to “1” in a mask.

» Skip Column 0 as it is never used.
* If Acan go to B, then B can go to A,

* All cells before a vertex in a row are guaranteed to be 0.



Speeding bitDP up - Part 1

* If Acan go to B, then B can go to A,

e Symmetry exists between DP table rows:

Vertex/Mask 0 1 2 3 4 5

0 1
dp[l] = 1 1
2
3
VEI DU ENS 0 1 2 3 4 5
0 1
dp[2] =

1
2 1
3



Speeding bitDP up - Part 2

* All cells before a vertex in a row are guaranteed to be 0.

Vertex/Mask 0 1 p 3 4 5 6 7 8 9 A
0 1 1 1 1
1 1 1 1 1 1
2 1 1 1 1
3 1 1

T = SR S



Held-Karp (via bitDP v2) Performance
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bitDP v2 on Topcoder (RainbowGraph)

e 70/70 Test Cases complete.

» Barely passes
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Discussion



Questions

* Whatis a Hamiltonian Path?
 What does bitDP stand for?

» What is the time complexity for finding a Hamiltonian Path via DFS? What
about via the Held-Karp Algorithm?
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